Relativity and geometry in (flat) spacetime

Walter Kohn Lecture

Sherbrooke, 6 November 2007

How to construct Minkowski Diagrams (1908) directly from Einstein's postulates (1905) as an exercise in Plane geometry in (flat) spacetime.

 Euclid vs. DescartesLight rectangles

Einstein's Two Postulates (Voraussetzungen) (1905)

1. In electrodynamics, as well as in mechanics, no properties of phenomena correspond to the concept of absolute rest.
... dem Begriffe der absoluten Ruhe nicht nur in der Mechanik, sondern auch in der Elektrodynamik keine Eigenschaften der Erscheinungen entsprechen....
2. Light always propagates in empty space with a definite velocity c, independent of the state of motion of the emitting body.
...sich das Licht im leeren Raume stets mit einer bestimmten, von Bewegungszustande des emittierenden Körpers unabhängigen Geschwindigkeit V fortpflanze.

Einstein's Third Postulate (1905)

3. If a clock at A runs synchronously with clocks at both B and C, then the clocks at B and C also run synchronously relative to each other.

Wenn die Uhr in A sowohl mit der Uhr in B als auch mit der Uhr in C synchron läuft, so laufen auch die Uhren in B und C synchron relativ zueinander.
3^{\prime}. If event A is simultaneous with event B and event C, then events B and C are also simultaneous.
$3^{\prime \prime}$. If an event A happens in the same place as event B and event C, then the events B and C also happen in the same place.

Something happening at definite place and time. Represented by a point in spacetime.

Bob turns on light
Alice makes a plane diagram depicting events at various times and places in one spatial dimension (e.g. along a long straight railroad track).

Lightning strikes track

Cow crosses
tracks

Conductor punches
Alice's ticket

Alice organizes events in her diagram by time: Simultaneous events placed on single straight line

- = an event

Equitemps
(lines of constant time)

Equitemps must be parallel.

Distance between equitemps proportional to time between events

Alice slides events along equitemps to further organize them by location:

Events in same place lie on same straight line
Equilocs must be parallel.
Can't be parallel to equitemps, but otherwise orientation arbitrary.

Alice redefines the foot:

1 conventional foot $(\mathrm{ft})=0.3048 \mathrm{~m}$.
1 foot $(f)=0.299792458 \mathrm{~m}$.
$1 \mathrm{f} / \mathrm{ns}=299,792,458 \mathrm{~m} / \mathrm{s}=c$, speed of light.

$$
\left(\mathrm{ns}=\text { nanosecond }=10^{-9} \mathrm{sec}\right)
$$

Alice relates spatial and temporal scales:
Equilocs representing events 1 f apart are same distance λ apart in diagram as equitemps representing events 1 ns apart.

Some of Alice's equitemps and equilocs and her scale factor λ
Conventional orientation:
Equilocs more vertical than horizontal.

Equitemps more horizontal than vertical.

Both symmetrically disposed about 45° lines.

Time increases with height on page.

equiloc
Alternative scale factor μ :

Equilocs and equitemps are characterized by two independent parameters: any two of λ, μ, Θ
Area of unit rhombus $=\lambda \mu=\mu^{2} \sin \Theta$.

Photon trajectory:

All events in the history of something moving at $1 \mathrm{f} / \mathrm{ns}$

Photon trajectories bisect angle $\Theta=2 \theta$ between equilocs and equitemps
(Equilocs and equitemps symmetrically disposed about photon trajectories)
Trajectories of oppositely moving photons are perpendicular.

Photon trajectory:

All events in the history of something moving at $1 \mathrm{f} / \mathrm{ns}$
Photon trajectories bisect angle $\Theta=2 \theta$ between equilocs and equitemps (Equilocs and equitemps symmetrically disposed about photon trajectories)
Trajectories of oppositely moving photons are perpendicular.

Bob's description of the same events:
Bob moves uniformly with respect to Alice.
He uses Alice's diagram to depict events, but tries to impose on it his own equilocs and equitemps.

$$
\begin{aligned}
v_{B A} & =\mu_{A} g / \mu_{A} h \\
& =g / h
\end{aligned}
$$

Bob's equiloc Alice's equilocs

Determining Bob's equitemps in Alice's diagram.

Einstein's Train:

Determining Bob's equitemps in Alice's diagram.

Einstein's Train:

Determining Bob's equitemps in Alice's diagram.

Einstein's Train:

Bob's equitemps and equilocs are straight lines that make same angle $\theta_{B}=\frac{1}{2} \Theta_{B}$ with photon trajectories.

Cannot tell who made the diagram first and who later added their own equitemps and equilocs.

Einstein (1905):

> The second principle is
> only apparently incompatible with the first.
> nur scheinbar unverträgliche

It remains only to determine the relation between Alice's scale factors λ_{A}, μ_{A} and Bob's, λ_{B}, μ_{B}

Independent of relation between scale factors:
Relativity of simultaneity (quantitative)

Bob: \mathbf{P}, \mathbf{R} at same place \mathbf{P}, \mathbf{Q} at same time

Alice: $D_{P R}=v_{B A} T_{P R}$
$\left(\mu_{A} g\right) \quad\left(\mu_{A} h\right)$
$T_{P Q}=v_{B A} D_{P Q}$
$\left(\mu_{A} g\right) \quad\left(\mu_{A} h\right)$

$$
v_{B A}=g / h
$$

Some useful preliminary definitions
Events lie on
Relations between events: somebody's

Events lie on somebody's equiloc

Two events determine a light rectangle.

Area Ω_{0} of Alice's unit light rectangle

$$
\Omega_{0}=\frac{1}{2} \lambda_{A} \mu_{A}
$$

Relation between Alice's and Bob's scale factors determined by reciprocity of the Doppler effect:

When Alice, Bob, and their clocks are all together they both set their clocks to 0 .

Later, when Alice's clock reads T she looks at Bob's. She sees Bob's clock reading t.

When Bob's clock reads same T he looks at Alice's. He must see Alice's clock reading same t.

Alice	Bob
and her	and his

she sees Bob's reading t When Alice's reads T
she sees Bob's reading t clock clock

Alice	Bob
and her	and his
clock	clock

When Alice's reads T she sees Bob's reading

$T=1 \Longrightarrow$ unit light rectangles have same area.
$\Omega_{0}=\frac{1}{2} \mu \lambda$
Product $\mu \lambda$ of scale factors is the same for everyone:
$\mu_{A} \lambda_{A}=\mu_{B} \lambda_{B}$

Bob's

Meaning of area Ω of light rectangle for any pair of time-like separated events:

/ Carol's equiloc

Ω / Ω_{0} is square of time between events
in frame in which they are at same place.

Meaning of area Ω of light rectangle for any pair of events:

Timelike separated

Timelike separated: Ω / Ω_{0} is square of time between events in frame in' which they are at same place.
Spacelike separated:
Ω / Ω_{0} is square of distance between events in frame in which they are at same time.
Ω / Ω_{0} is squared interval I^{2} between events

$$
\Omega=\Omega_{0} D_{\mathrm{c}}^{2}
$$

Application (in 3+1 dimensions)
How to measure the interval between P and Q using only light signals and a single clock:*

Alice moves uniformly with her clock;
Alice and her clock are both present at P.
Bob is present at Q.
When P happens Alice's clock reads T_{0}.
When Q happens, Bob sees Alice's clock reading T_{1}.
When Alice sees Q happen, her clock reads T_{2}.

$$
I_{P Q}^{2}=\left|\left(T_{1}-T_{0}\right)\left(T_{2}-T_{0}\right)\right|
$$

[^0]Alice and
her clock
P and Q
spacelike separated
$\Omega_{T_{2}, T_{0}}=a b$
$\Omega_{T_{1}, T_{0}}=f^{2} a b$
$\Omega_{P, Q}=f a b$

$$
\Longrightarrow
$$

$$
\Omega_{P, Q}^{2}=\Omega_{T_{2}, T_{0}} \Omega_{T_{1}, T_{0}}
$$

$$
I_{P, Q}^{2}=\left(T_{2}-T_{0}\right)\left(T_{0}-T_{1}\right)
$$

P and Q timelike separated
$\Omega_{T_{2}, T_{0}}=a b$
$\Omega_{T_{1}, T_{0}}=f^{2} a b$
$\Omega_{P, Q}=f a b$

$\Omega_{P, Q}^{2}=\Omega_{T_{2}, T_{0}} \Omega_{T_{1}, T_{0}}$
$I_{P, Q}^{2}=\left(T_{2}-T_{0}\right)\left(T_{0}-T_{1}\right)$

Stacking plane diagrams in orthogonal direction.

Isotropy: When Alice adds second spatial dimension perpendicular to plane, photon trajectories through a point should expand to right circular cone.

Sets scale factor σ for perpendicular dimension.

Determination of

 perpendicular scale factor $\sigma$$$
\begin{aligned}
\sigma^{2} & +\mu^{2} \sin ^{2}(\pi / 4-\theta) \\
& =\mu^{2} \cos ^{2}(\pi / 4-\theta) \\
\sigma^{2} & =\mu^{2} \cos (\pi / 2-2 \theta) \\
& =\mu^{2} \sin (2 \theta) \\
& =\mu^{2} \sin \Theta \\
& =\mu \lambda
\end{aligned}
$$

σ is (invariant) geometric

$$
\longleftarrow \mu \cos (\pi / 4-\theta) \longrightarrow
$$

$\mu \cos (\pi / 4-\theta)$

$$
\sigma \text { is (invariant) geometric }
$$

$$
\text { mean of } \mu \text { and } \lambda \text {. }
$$

References

N. David Mermin, It's About Time, Princeton, 2005.
From Einstein's Postulates to Spacetime Geometry, Annalen der Physik 14, 103-114 (2005).
Spacetime Intervals as Light Rectangles, Am. J. Phys. 66, 1077-1080 (1998).
Dieter Brill and Ted Jacobson,
Spacetime and Euclidean Geometry, http://arxiv.org/abs/gr-qc/0407022
Dierck-Ekkehard Liebscher,
http://www.aip.de/~1ie/
The Geometry of Time, Wiley-VCH (2005)

[^0]: *Robert F. Marzke, 1959 Princeton senior thesis.

