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RbFe(MoO4)2 is one of the best physical examples of a quasi-two-dimensional easy-plane triangular-lattice
antiferromagnet. Although the magnetic phase diagram of this material has been well-studied, there are discrep-
ancies in the literature concerning the number of magnetic phases, as well as the nature of the phase transitions.
By performing ultrasound velocity measurements, we have obtained a detailed phase diagram with magnetic
fields parallel and perpendicular to the triangular layers. The order of the phase transitions was found to be
consistent with previous theoretical studies of generic two-dimensional triangular antiferromagnets. To support
our experimental findings, we present a phenomenological model that includes biquadratic and next-nearest-
neighbor interplane interactions. This model is sufficient to reproduce the phase diagram at low temperatures,
and the next-nearest-neighbor interactions are shown to stabilize the incommensurate phases (Y and V ).
Furthermore, the model provides insight regarding the magnetic ordering along the ĉ-axis in the magnetic plateau
phase, suggesting that period 3 is established whenever the next-nearest-neighbor superexchange interactions
are unequal. In the systems in which these interactions are expected to be equal, the model predicts degeneracy
between period 2 and period 3 structures, at the classical level.
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I. INTRODUCTION

Triangular-lattice antiferromagnets (TLAFs) are undoubt-
edly the simplest example of frustrated magnetic systems.
However, they still provide a large playground for theoretical
and experimental research due to their rich magnetic phase
diagrams, which include both collinear and noncollinear mag-
netic phases. RbFe(MoO4)2 belongs to a crystalline family
with the general formula A+R3+(MO4)2, where A is Ag, Tl,
or an alkali metal; R is either a rare-earth atom, Bi, In, Ga,
Al, Fe, or Cr; and M is either Mo or W. RbFe(MoO4)2

along with several other iron-containing molybdates, such
as CsFe(MoO4)2 and TlFe(MoO4)2, all have trigonal struc-
ture with Fe3+ magnetic ions located on triangular networks,
stacked directly on top of each other [1–3], making them
excellent physical systems for studying the properties of
quasi-two-dimensional TLAFs. A common feature of this
family of materials is a structural phase transition at
T � 190 K which changes the space group of the crystal
from P3̄m1 to P3̄ [2,4,5]. This transition corresponds to a
rotation of MoO2−

4 tetrahedrons around the crystallographic
ĉ-axis (perpendicular to the triangular layers) in a way that
establishes three distinct superexchange pathways between
magnetic ions in different triangular planes [4]. The low-
temperature crystal structure and the superexchange pathways
are presented in Fig. 1. Two of these (labeled Ja and Jb)
correspond to the interplane next-nearest-neighbor (NNN)
interactions, and the remaining one (J2) is the interplane

nearest-neighbor (NN) interaction between the spins. The in-
traplane NN exchange interaction, J1, has been determined
to be the dominant coupling with the coupling constant
J1 ≈ 1 K. Since it is practically impossible to individually
determine the three interplane interactions (J2, Ja, Jb), the “ef-
fective” interplane coupling was previously deduced to be
Jc ≈ 0.008 K [4,6].

Over the years, there have been multiple experimental
studies of the field-induced magnetic phases in RbFe(MoO4)2

using various experimental techniques [6–11]. Consequently,
the magnetic phase diagram corresponding to the field parallel
to the basal plane of the triangular lattice is relatively well-
established. This experimental phase diagram is consistent
with theoretical models for a generic XYZ TLAF with weak
interplane coupling [12–18]. The spin configurations associ-
ated with the low-temperature phase sequence observed with
the field applied parallel (Hx) and perpendicular (Hz) to the
basal plane are presented in Figs. 2(a) and 2(b). In the absence
of a magnetic field, the spin structure corresponds to the 120◦
configuration. When the external field is oriented parallel to
the triangular planes, the magnetic phases are all coplanar and
correspond to, in the order of increasing magnetic field, the
Y -state, the UUD-state (up-up-down state, or magnetization
plateau), the C-state, the V -state, and the fully saturated fer-
romagnetic state. In the case of RbFe(MoO4)2, as illustrated
in Fig. 2(a), the Y -state and V -state phases have been shown
to be incommensurate along the ĉ-axis with the ẑ-component
of the wave vector determined to be qz ≈ 0.468 [4,10].
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FIG. 1. (a) The low-temperature P3̄ crystal structure of
RbFe(MoO4)2. The superexchange interactions between the Fe3+

ions (blue) shown in (b) are mediated by the O2− anions (red) lo-
cated on the MoO2−

4 pyramids (purple). The Rb+ ions (green) are
nonmagnetic and do not contribute to the magnetic interactions.

Interestingly enough, the number of magnetic phases has been
slightly inconsistent in the recent literature. In particular, a
recent neutron study [4] reported the four above-mentioned
magnetic phases, whereas previous 87Rb-NMR [8], as well
as heat capacity, magnetization, and dielectric measurements
[7,9], clearly display five distinct phases, where the order of
magnetic states follows that presented in Fig. 2(a) with an
additional phase between the Y -state and the UUD-state.
This new phase has the same spin structure as the Y -state,
except the spins in different layers completely overlap, leading
to a commensurate order. Therefore, in the remainder of this
work we will refer to this magnetic order as the commensurate
Y -state. Previous studies have also indicated that the magne-
toelectric coupling may be responsible for stabilizing this new
phase [7,9,10].

When the external field is applied perpendicular to the
triangular layers [Fig. 2(b)], the 120◦ structure develops a
small magnetization component in the ẑ-direction forming a

FIG. 2. Field dependence of low-temperature magnetic phases of
TLAF with weak interplane interactions and applied fields parallel
(a) and perpendicular (b) to the triangular layers. The spin arrows
on different magnetic sublattices are drawn from the same origin for
easier presentation. Blue and red arrows differentiate between spins
in different triangular layers. For the UUD, V , Vz, and saturated
states, the overlapping spins are shifted for clarity. The black arrow
indicates the relative magnitude (not to scale) and orientation of the
external magnetic field. Note that in the case of the U -state, the spins
remain in a 120◦ configuration in the xy plane, but they also obtain a
magnetization component along the z-axis.

noncoplanar U -state (umbrella). As the magnitude of the field
is increased, the spin structure is predicted to discontinuously
change into the coplanar Vz-state. Recently, the magnetic
phase diagram of RbFe(MoO4)2 with applied field parallel to
the ĉ axis was constructed from polarization, dielectric sus-
ceptibility, and magnetization data [7,20]. The experimental
results display two phases, in agreement with the numerical
calculations for this field orientation [Fig. 2(b)] [21].

For both field orientations (parallel and perpendicular to
the triangular layers), the order of phase transitions between
low-field phases (C-state and U -state, respectively) and the
V -states has been inconsistent in the literature: the exper-
imental results seem to indicate that these transitions are
continuous [6–11], despite numerical work predicting first-
order transitions [17–19]. Similar first-order transitions have
been observed experimentally in other quasi-two-dimensional
TLAFs, such as BaCo3Sb2O9 [22].

Recent theoretical studies of weakly coupled TLAFs with
additional biquadratic intraplane interactions [18], which are
known to stabilize the magnetization plateau [23], revealed
that even small interplane couplings are responsible for the
stabilization of some magnetic phases (including the C-state)
at high fields. Therefore, one might expect that the addition
of the biquadratic term, as well as the NNN interplane inter-
actions, may stabilize incommensurate order, as reported in
previous experimental studies [4,10].

In this paper, we aim to resolve some of these discrepan-
cies in the literature by presenting high-resolution ultrasound
velocity measurements of RbFe(MoO4)2. These results were
used to construct detailed magnetic phase diagrams with the
magnetic field parallel and perpendicular to the basal planes
of the triangular layers. The order of the phase transitions was
determined through the observation of hysteresis between the
ascending and descending temperature and field sweeps. The
phase transition between the incommensurate-commensurate
Y -states was not observed in the ultrasound velocity mea-
surements. The reason for this could be that the acoustic
wavelength is orders of magnitude larger than the interatomic
distances, which might result in a reduced sensitivity to the
incommensurate to commensurate types of phase transitions.
Nevertheless, the observation of magnetic hysteresis at the
phase boundary between the C and V states has made it clear
that the phase transitions are of first order, in agreement with
previous theoretical predictions. Similarly, the experimental
results suggest that the phase transition between U and Vz

phases is of first order. In addition to the experimental results,
we also present a classical spin model, and we show that it
is able to qualitatively reproduce the experimental phase dia-
grams at low temperatures. Importantly, the proposed model
correctly predicts the magnetization plateau, and we are fur-
ther able to show that unequal NNN interplane interactions
(Ja �= Jb) will always stabilize period 3 along the ĉ-axis in this
phase.

The rest of the paper is organized as follows. Section II
briefly describes the experimental procedure, and in Sec. III
we confirm the existence of the first-order transitions for
both field orientations by conducting high-resolution ultra-
sound velocity measurements, which we use to construct
detailed phase diagrams for magnetic field parallel and per-
pendicular to the basal plane (B ‖ ab and B ‖ ĉ, respectively).
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In Sec. IV we present the classical Heisenberg model with
intraplane biquadratic interactions. When the NNN interac-
tions are unequal, the magnetic phases alternate between
incommensurate and commensurate structures, in agreement
with the previously reported neutron scattering results. The
magnetization and spin structure for magnetic field paral-
lel and perpendicular to the triangular planes are presented
in Sec. V, and the analytical calculations for the magnetic
ordering in the magnetization plateau phase are given in
Sec. VI. Finally, the results of this work are summarized in
Sec. VII.

II. EXPERIMENT

All experimental measurements were conducted on a thin
plate single crystal (0.6 mm thick) grown by a sponta-
neous crystallization technique as described in [24]. Acoustic
modes, propagating in the directions parallel and perpendicu-
lar to the triangular planes, were found to be well-coupled to
the spin degrees of freedom and were used to determine the
temperature–magnetic-field phase diagram of RbFe(MoO4)2.
In the following, we set the velocity propagation axes such
that the ẑ-axis is parallel to the crystallographic ĉ axis. Due
to the small dimensions of the sample, the alignment of the x̂
and ŷ axes with the in-plane crystallographic axes was not pos-
sible; however, this did not influence the experimental results
since the elastic properties are isotropic in the directions paral-
lel to the triangular layers. For modes propagating along the ẑ
axis, the sample was placed on a 2.46-mm-thick nonmagnetic
CaF2 buffer, and 30-MHz LiNbO3 piezoelectric transducers
were mounted to the corresponding faces of the crystal and the
buffer. The first set of experiments was conducted at 90 MHz
by measuring the velocity of the longitudinal mode, propagat-
ing along the ẑ-axis, VLẑ. For further investigations, transverse
modes propagating and polarized in the basal plane were also
measured, VT x̂Pŷ. In the latter case, the buffer was removed
and the transducers were mounted normal to the triangular
layers of the material. In both cases, the acoustic waves were
generated by a high-precision pulsed acoustic interferome-
ter in the transmission configuration giving a resolution of
�V
V ∼ 10−6. The measurements as a function of temperature

and magnetic field were performed using a helium flow cryo-
stat with an incorporated superconducting magnet. In this
study, the temperature dependence was determined between
1.8 and 5 K with the magnetic field applied parallel and
perpendicular to the triangular plane between 0 and 15 T.

III. EXPERIMENTAL RESULTS

A. Magnetic field parallel to the basal plane (B ‖ ab)

In Fig. 3, we present a series of experimental results for
the relative velocity variation (�V

V ) as a function of the mag-
netic field. Both sets of velocity measurements (VT x̂Pŷ and
VLẑ) display three anomalies, as shown in Fig. 3, confirm-
ing the existence of magnetic phase transitions. Moreover,
as presented in Fig. 3(c), we observed magnetic hysteresis
loops characteristic of a first-order transition. Figure 4 shows
the relative velocity variation as a function of temperature
measured at different fields. As seen in Figs. 4(a) and 4(b),

FIG. 3. Relative velocity variation as a function of magnetic
field, B ‖ ab, for (a) transverse (VT x̂Pŷ) and (b) longitudinal (VLẑ)
modes. (c) Field scans displaying magnetic hysteresis loops indicate
a first-order transition. Solid lines are for increasing field, and dotted
lines are for decreasing field. The individual scans are offset for
clarity.

only one anomaly occurs at low fields. However, as the
magnitude of the magnetic field increases, another anomaly
appears between B = 2.0 and 2.3 T. These results for the
relative velocity variation as a function of temperature and
magnetic field were used to construct the temperature-field
phase diagram of RbFe(MoO4)2 presented in Fig. 5. The
general structure of this phase diagram is, for the most part,
consistent with the previous experimental measurements. The
Néel temperature at zero field, TN , was determined to be
TN = 3.64 K, which is slightly lower than the value deter-
mined in previous reports (TN = 3.8–3.9 K) [6–11]. Note also
that the commensurate Y -state (labeled as P2 in [10]) was
not observed in the present experiment. Based on some of
the previous experimental phase diagrams, we would expect
this phase to fall between B = 4 and 5 T at T = 2 K with
the phase boundaries quickly merging at higher temperatures
[6,10]. The coexistence region between C and V (Fig. 5,
dashed lines) phases was determined from the hysteresis ap-
pearing in the velocity data. The lower and upper boundaries
of this region correspond, respectively, to scans with de-
creasing and increasing values of temperature or magnetic
field.

B. Magnetic field perpendicular to the basal plane (B ‖ ĉ)

In Fig. 6 we present the representative data for the rel-
ative velocity variation with the magnetic fields parallel to
the ĉ axis. As before, both sets of velocity measurements
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FIG. 4. Relative velocity variation of transverse modes propagat-
ing and polarized in the basal plane (VT x̂Pŷ) measured as a function
of temperature with field parallel to the basal plane (B ‖ ab) (a,c)
and longitudinal modes propagating along the ẑ direction parallel to
the crystallographic c-axis (VLẑ) (b). The low-field (0–4 T) results in
(a) and (b) display two phase boundaries, and an additional high-field
transition (11.5–14.5 T) is shown in (c).

display the same progression of anomalies as a function of
temperature [Figs. 6(a)–6(c)]. The field scans with an in-
creasing and decreasing field display clear hysteresis loops,
demonstrating that the phase transition between the U -
(umbrella) and the Vz-state is of first order. Similarly, the
temperature scans show small but prominent hysteresis loop
signatures at higher field values. Note that in the case of
high-field temperature scans [Fig. 6(c)], the velocity variation
was nearly flat, so the derivatives of data were used in order
to detect the anomalies corresponding to the magnetic phase
transitions. Figure 7 shows the temperature-field phase dia-
gram of RbFe(MoO4)2 for B ‖ ĉ. The structure of this phase
diagram is typical for XY TLAFs such as Ba3CoSb2O9 and
CsCuCl3 [22,25].

IV. MODEL

In describing the ground state of an easy-plane quasi-two-
dimensional TLAF material, the spin fluctuations were shown
to be crucial in stabilizing the magnetization plateau at one-
third of the magnetization saturation value [15]. Zhitomirsky
[23] determined that this effect of spin fluctuations can be
qualitatively modeled with a biquadratic term in the classical
approach. The large value of the total spin on Fe3+ ions
(S = 5/2) allows for a classical treatment of magnetism in
RbFe(MoO4)2, therefore to describe the magnetic structure of
easy-plane two-dimensional (2D) TLAFs, one can write the

FIG. 5. Temperature-field experimental phase diagram
of RbFe(MoO4)2 for B ‖ ab obtained from sound velocity
measurements of the transverse acoustic mode VT x̂Pŷ. Circles and
triangles indicate temperature and field scans, respectively, and the
dashed red lines indicate the coexistence region for the first-order
transition.

FIG. 6. Relative velocity variation as a function of (a)–(c) tem-
perature scans at different fields, and (d) magnetic field scans at
different temperatures for B ‖ ĉ. Solid and dotted lines in (c) and
(d) denote increasing and decreasing values of temperature/field,
respectively.
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FIG. 7. Temperature-field experimental phase diagram of
RbFe(MoO4)2 for B ‖ ĉ obtained from sound velocity measurements
in the transverse mode VT x̂Pŷ as a function of temperature (circles)
and field (triangles).

energy per plane using the following Heisenberg Hamiltonian
with single-ion anisotropy:

Hp = H(J1 )
p + H(γ )

p + H(D)
p + H(Z )

p , (1)

H(J1 )
p = J1

∑
〈i j〉

Si,p · S j,p, (2)

H(γ )
p = −γ

∑
〈i j〉

(Si,p · S j,p)2, (3)

H(D)
p = D

∑
i

(
Sz

i,p

)2
, (4)

H(Z )
p = −1

3
H ·

∑
i

Si,p, (5)

where H(J1 )
p is the isotropic exchange, H(γ )

p is the phenomeno-
logical biquadratic exchange coupling, H(D)

p is the single-ion
anisotropy, and H(Z )

p is the Zeeman interaction. Here, p labels
the crystal plane, J1 > 0 is the in-plane coupling constant,
γ < 0 is the biquadratic coupling constant, D > 0 is the
single-ion anisotropy constant, and H is the auxiliary mag-
netic field. Indices i, j indicate sites on the triangular lattice,
and 〈· · · 〉 implies summation over nearest neighbors. In the
classical approximation, the spins Si,p are represented as con-
tinuous vectors rather than operators. This model successfully
predicts four phases on the phase diagram: the Y -state (with
120◦ configuration at H = 0), the UUD-state (magnetization
plateau), and the V -state, which then leads to magnetic satu-
ration. The results obtained with this classical 2D XY model
at T = 0 are perfectly consistent with other approaches such
as spin-wave theory [4]. However, Yamatoto et al. [17,19] re-
cently showed that the inclusion of a weak antiferromagnetic
interplane coupling in the Hamiltonian leads to an additional
magnetic phase, the C-state. Moreover, the calculations of Li
et al. [18] indicate that the size of this interplane coupling
may introduce an even larger variety of magnetic phases, rad-
ically changing the phase diagram. In RbFe(MoO4)2, NNN
interplane interactions have also been shown to play a crucial
role in stabilizing the incommensurate ground state at H = 0

[4,26,27]. Therefore, the energy per magnetic plane is written
as

H =
N∑
p

1

N
Hp + 1

N − 1
H(IPC)

p , (6)

where the interplane coupling is given by

H(IPC)
p =

∑
i

J2Si,p · Si,p+1

+
∑

〈〈i jk〉〉
JaSi,p · S j,p+1 + JbSi,p · Sk,p+1. (7)

Here, N is the number of magnetic planes. Indices i, j, and
k label the sites on the triangular layers, and 〈〈· · · 〉〉 im-
plies summation over interplane NNN, as presented in Fig. 1.
J2 represents the interplane NN coupling constant, while Ja

and Jb correspond to two different NNN interplane coupling
constants. In this work, we set J1 = 1 thus normalizing the
magnitudes of the remaining interactions with respect to the
in-plane exchange. Using the values from Ref. [4], we also
set D/J1 = 0.31 and J2/J1 = 0.008. Li et al. [18] showed
that the value of γ /J1 = −0.05 can successfully reproduce
the magnetization plateau. Furthermore, Li et al. [18] also
showed that for 0 < J2/J1 < 0.1, the z-components of the
spins Sz

i,p = 0. Therefore, we parametrize the spins as two-
dimensional vectors:

Si,p = (cos θi,p, sin θi,p). (8)

Minimizing the energy with respect to the angles θi,p, the
solution for the spin configuration of the system is obtained
at various magnetic fields. The ground state (H = 0) can be
determined by treating the interplane coupling as a perturba-
tion and assuming a 120◦ state for each plane. This amounts to
only considering three sites in each plane (a single triangular
unit), which reduces Eq. (6) to an equation with a single
variable, qz, which is the z-component of the magnetic wave
vector,

H120 = 3γ

4
− 3

2
+ 3J2 cos 2πqz

+ 3

2
Ja(

√
3 sin 2πqz − cos 2πqz )

− 3

2
Jb(

√
3 sin 2πqz + cos 2πqz ). (9)

The solution obtained by minimizing the magnetic energy
corresponds to

2πqz = − arctan

( √
3(Jb − Ja)

2J2 − (Ja + Jb)

)
+ π. (10)

The values of qz are plotted as a color map in Fig. 8. Note
that when one of Ja and Jb is 0, the value of qz becomes 1/3
or 2/3, which both correspond to period 3 [28]. At the same
time, whenever Ja = Jb, period 2 is favored.

Equation (10) allows us to determine the ratio between Ja

and Jb by fixing qz to the experimental value of qz = 0.468.
For further calculations, we used the values Ja = 0.004 and
Jb = 0.0048 to minimize the magnetic energy for the range of
magnetic field values (H = 0–10).
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FIG. 8. qz as a function of Ja and Jb corresponding to the second
solution in Eq. (10). The values on the color bar range from qz = 1/3
to 2/3.

V. MAGNETIZATION AND SPIN STRUCTURE

A. Magnetic field parallel to the basal plane (Hx)

First, the calculations were performed for a system with
only two planes. Using two planes allows one to establish
periodic conditions along the ĉ-axis, without putting implicit
constraints on the value of qz. This allows for both commen-
surate and incommensurate solutions. Minimizing the energy,
we calculate the ground-state spin configuration for each
value of the magnetic field. The uniform magnetization of the
system, m = 1

Nt

∑
i Si, where Nt is the total number of spins,

gives a good representation of the magnetic structure of the
system, and in particular it can be used to locate the magnetic
phase transitions [29]. Figure 9 shows the calculated induced
magnetization per spin as well as its derivative with respect to
the applied field. These results display four phase transitions

FIG. 9. Calculated magnetization (mx) and its derivative ( dmx
dHx

) of

RbFe(MoO4)2 per magnetic Fe3+ ion as a function of the applied
magnetic field.

FIG. 10. The magnitude of the y-component of magnetization
per plane.

with the transition points at H ≈ 2.2, 3.2, 6.1, and 8.3. In
agreement with Fig. 2(a), the five magnetic phases correspond
to the Y -state, the UUD-state, the C-state, the V -state, and
the saturated phase. The magnetization plateau (UUD-state)
at 1/3 of the magnetic saturation is a characteristic feature
of the TLAFs. In addition to the induced magnetization par-
allel to the magnetic field, in incommensurate phases we
also identified a small alternating transverse component of
magnetization which on average cancels in the whole system.
Figure 10 shows the magnitude of the transverse magnetiza-
tion component (my) as a function of the applied magnetic
field. As seen from this figure, the transverse magnetization is
present in the Y state, then it vanishes in the plateau phase, and
it reappears again in the V phase. The number and the order
of these magnetic phases is consistent with the experimental
observations, as described by the experimental phase diagram
in Fig. 5. As mentioned above, the numerical results suggest
that the transition between C and V phases is discontinuous,
implying a first-order transition, which is consistent with the
sound velocity data as shown in Fig. 3.

Next, we study the stabilization energy of the incommen-
surate order by adding another magnetic plane and imposing
the periodic boundary conditions, which imposes a period 3
order. Labeling the energies of two- and three-layer systems as
E2 and E3, respectively, the energy difference �E = E2 − E3

between the two systems (Fig. 11) is small for all fields,
however these results display a clear field dependence. In
particular, the difference in energy is zero in the phases where
we expect a period 3 commensurate order and is negative in
the incommensurate phases observed in the system with two
planes. Therefore, in general, �E � 0 or E2 � E3. As men-
tioned earlier, a system with two magnetic planes allows for
both commensurate and incommensurate structures, however
in the case of three planes, the periodic boundary conditions
effectively fix the period of the system at 3. From previous
neutron scattering results, the z-component of the magnetic
wave vector Q is qz ≈ 0.468 for incommensurate structures
and qz = 1/3 for the commensurate states. Therefore, our
results show, in agreement with the neutron scattering exper-
iments, that the incommensurate phases predicted with two
planes give a true ground state as compared to the period 3
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FIG. 11. Field dependence of the energy difference between a
system with two planes and a system with three planes and periodic
boundary conditions: �E = E2 − E3. A system with two planes
allows for commensurate and incommensurate solutions, while a
system with three planes and periodic conditions constrains the peri-
odicity along ĉ to period 3. The inset shows a zoomed-in region near
the transition between the UUD and the V phases. Small nonzero
component of �E may indicate weak incommensurate nature of the
C-state.

structures imposed by the periodic conditions in a system with
three planes (E2 < E3). For the commensurate states, both
systems predict the same ordering, thus �E = 0. Notably, the
energy difference is slightly less than zero for the C phase, as
shown in the zoomed-in window in Fig. 11. This indicates that
this phase might be weakly incommensurate; however, since
the magnitude �E is very small, these speculations require
stronger evidence before any conclusions are drawn.

B. Magnetic field parallel to the basal plane (Hz)

To analyze the system with the applied field along the ĉ
axis, the spins are rewritten in spherical coordinates to include
the z-component:

Si,p = (cos φi,p sin θi,p, sin φi,p sin θi,p, cos θi,p), (11)

where φi,p and θi,p represent the azimuthal and polar angles
of the ith spin in the pth plane. The physical properties of the
system can therefore be calculated by minimizing the Hamil-
tonian with respect to these spin coordinates. The uniform
magnetization along the z-axis (mz) as well as its derivative
( dmz

dHz
) are presented in Fig. 12 as a function of the mag-

netic field. In total, Fig. 12 displays two phase transitions
at H ≈ 8.0 and 10.1. The spin configurations for these three
phases, in agreement with Fig. 2(b), correspond to the U -state
(Umbrella), the Vz-state, and the saturated phase.

VI. MAGNETIC ORDER IN THE MAGNETIZATION
PLATEAU

Another interesting observation from Fig. 11 is that in the
UUD phase, the energies for periods 2 and 3 are the same, de-
spite the fact that the experimental results for RbFe(MoO4)2

[4,10] clearly indicate that qz = 1/3 in the magnetization
plateau. This can be understood by considering the spin con-
figurations for periods 2 and 3 in the magnetization plateau, as
depicted in Fig. 13. If only the first two planes are considered,

FIG. 12. Numerically calculated magnetization of
RbFe(MoO4)2 per magnetic Fe3+ ion and its derivative as a
function of the magnetic field applied along the ĉ axis.

the spin configuration is exactly the same, which implies that
for a system with two planes, periods 2 and 3 are degenerate,
explaining the results in Fig. 11. As a matter of fact, periods 2
and 3 are the only two possible long-range antiferromagnetic
periodic configurations along the z-axis in the UUD phase.
For both of these cases, the magnetic energies can be written
by using Eq. (6) for six planes with periodic conditions by
imposing the corresponding spin structures:

Ep2 = −J2 + Ja + Jb + 3γ − 2, (12)

Ep3 = −J2 + 3γ − 2 +
{−Jb + 3Ja if Jb > Ja,

−Ja + 3Jb if Ja > Jb.
(13)

Using six planes and periodic boundaries ensures that both
periods 2 and 3 are allowed, as discussed previously. Using
Eqs. (12) and (13), the energy difference can be calculated to

(a)     (b)

z-axis

FIG. 13. Spin ordering for six planes in the UUD phase. The
three spins in a triangle are placed next to each other for better
presentation. Period 2 (a) corresponds to qz = 1/2 for two of the
spins and qz = 0 for another. On the other hand, period 3 (b) implies
qz = 1/3 for all three spins.
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determine the ground state:

�E = Ep3 − Ep2 =
{

2Ja − 2Jb if Jb > Ja,

2Jb − 2Ja if Ja > Jb.
(14)

In both cases, �E < 0 implying that Ep3 < Ep2 for all values
of γ , J2, Ja, and Jb. Hence, period 3 is favored whenever
Ja �= Jb. Svistov et al. in Ref. [7] previously calculated that
the dipolar interactions may also lift the degeneracy making
period 3 structure slightly more favorable, however the corre-
sponding energy contribution is an order of magnitude smaller
than that due to the NNN exchange interactions presented in
this work. It remains unclear, however, if either period 2 or
3 would be stabilized if Ja = Jb, since the classical model
predicts that in this case the two states would be degenerate.
Experimentally, Ba3CoSb2O9 is known to have a period 2
structure in the magnetization plateau [30]. The hexagonal
symmetry of this material (in particular, the sixfold rotations)
ensures that Ja = Jb. This poses a problem since, as mentioned
above, periods 2 and 3 are predicted to be degenerate in this
system; however, the experimental results suggest that other
factors stabilize the period 2 configuration. The methods used
in this work are restricted to the energy calculations, so a more
sophisticated model is required in order to study the stability
of period 2 and period 3 states for this system.

VII. CONCLUSIONS

In this work, we were able to experimentally confirm the
nature of the magnetic phase transitions in RbFe(MoO4)2

with magnetic fields oriented parallel and perpendicular to the
triangular layers. The phase transitions between the C and
V states, as well as the U and Vz states, were confirmed
to be of first order, in agreement with previous theoretical
predictions. The ultrasound velocity measurements only show
one of the previously reported Y states (which corresponds to
P1 in [10]). This is likely due to the fact that in the ultrasound
velocity measurements, the acoustic wavelength is large com-
pared to the interatomic distances, which implies that the

measurements are sensitive to the changes in the order param-
eters averaged over many unit cells of the crystal. Since only
the qz changes in the transition between the incommensurate
and commensurate Y -states (i.e., no considerable change in
spin polarization), it is reasonable to speculate that this transi-
tion cannot be resolved in the ultrasound velocity experiment.
On the contrary, the transition between the C and V phases is
very well defined since in addition to the change in qz there is
also a discontinuous change in the spin structure of each spin
triangle where two of the spins become parallel.

The phenomenological model presented in this paper is
sufficient to reproduce the phase diagram at low temperatures.
The unequal NNN interplane interactions were shown to sta-
bilize the incommensurate phases (Y and C). These results
generalize previously studied models where crystal symmetry
implies Ja = Jb (in materials such as Ba3CoSb2O9), and only
commensurate phases are allowed. As with the experimental
results, our model does not predict the commensurate Y -state
since we did not include the magnetoelectric coupling which
was shown to stabilize this magnetic phase [10].

Lastly, we were able to show that unequal NNN inter-
actions favor period 3 in the magnetic plateau, which is
supported by previous neutron diffraction studies [4]. Further-
more, in the systems in which Ja = Jb, the model predicts
the energies of the UUD structures with periods 2 and 3
to be the same, however the neutron diffraction studies [30]
indicate that period 2 is the equilibrium spin configuration in
Ba3CoSb2O9. As a result, there must be higher-order effects,
not accounted by our model, which stabilize one configuration
over another.
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