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We report the static and dynamic magnetic properties of LaSrCrO4, a seemingly canonical spin-3/2 square-
lattice antiferromagnet that exhibits frustration between magnetic layers – owing to their AB stacking – and
offers a rare testbed to investigate accidental-degeneracy lifting in magnetism. Neutron diffraction experiments
on single-crystal samples uncover a remarkable anticollinear magnetic order below TN = 170 K characterized
by a Néel arrangement of the spins within each layer and an orthogonal arrangement between adjacent layers.
To understand the origin of this unusual magnetic structure, we analyze the spin-wave excitation spectrum by
means of inelastic neutron scattering and bulk measurements. A spectral gap of 0.5 meV, along with a spin-
flop transition at 3.2 T, reflect the energy scale associated with the degeneracy-lifting. A minimal model to
explain these observations requires both a positive biquadratic interlayer exchange and dipolar interactions,
both of which are on the order of 10−4 meV, only a few parts per million of the dominant exchange interaction
J1 ≈ 11 meV. These results provide direct evidence for the selection of a non-collinear magnetic structure by
the combined effect of two distinct degeneracy lifting interactions.

Introduction. The emergence of accidental ground state de-
generacy and its lifting are central to our understanding of
frustrated magnetism [1–3]. The interplay between exchange
interactions and lattice geometry often result in a family of ac-
cidentally degenerate ground states that are unrelated by sym-
metry. The degeneracy is then lifted either by subleading in-
teractions, e.g. magnetic dipolar interaction [4–7], magnetoe-
lastic coupling [8, 9], etc.; or by fluctuations that normally
work against ordering, e.g. quenched disorder, thermal or
quantum fluctuations, through the “order by disorder (ObD)"
mechanism [10–16]. The diverse degeneracy lifting mech-
anisms can stabilize a host of magnetic orders in materials
with similar structures and chemical compositions [17, 18],
and their competition offers flexible tunablity in and out-of-
equilibrium [19, 20]. Yet, experimentally revealing the degen-
eracy lifting mechanism is a challenging task due to the mi-
nuscule energy scales, sometimes in the one part per million
of the dominant exchange interaction, associated with these
subleading interactions and/or the ObD effects [21].

The quasi two-dimensional (2D) square lattice Heisenberg
antiferromagnet with AB stacking is a prominent model sys-
tem to illustrate the diverse degeneracy lifting mechanisms
and the wealth of resulting magnetic orders [14, 28–30]. The
antiferromagnetic intra-layer exchange interaction stablize a
2D Néel order in each layer. However, the inter-layer ex-
change interactions are frustrated owing to the AB stacking.
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FIG. 1. (a) The quasi-2D square lattice antiferromagnet with AB
stacking comprises of two sublattices (dubbed A and B), each host-
ing a 3D Néel order. The two Néel vectors are decoupled at the
mean field level owing to the frustrated interlayer coupling. An
easy-plane single-ion anisotropy forces the Néel vectors to be in
the crystallographic ab plane, which are then parametrized by their
respective azimuthal angles (φa, φb). (b) Collinear spin structure
with φa = φb = π

4
, observed in La2CuO4 [22], Sr2CuO2Cl2 [23],

LaSrFeO4 [24], and La2CoO4 in the orthorhombic phase [25]. (c)
Collinear spin structure with φa = φb = 3π

4
for La2NiO4 [26] and

possibly La2CoO4 in the low temperature tetragonal phase [25, 27].
(d) Anticollinear state with φa = 0, φb = π

2
, for LaSrCrO4 reported

in this work. (e) The other symmetry-inequivalent anticollinear order
with φa = 0, φb = −π

2
.

Consequently, the Néel vectors in two adjacent layers re-
main decoupled at the mean field level, thereby giving rise
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to a continuous manifold of accidentally degenerate ground
states, which can then be selected by various mechanisms. In
particular, the thermal and quantum fluctuations stabilize the
collinear arrangement of Néel vectors through the ObD mech-
anism, whereas the quenched disorder favors anticollinear or-
ders where the Néel vectors are orthogonal [14].

Experimentally, such interlayer frustration exists in a
large family of transition metal oxides with a layered per-
ovskite structure of the K2NiF4 type [space group I4/mmm,
Fig. 2(a)] and easy-plane single-ion anisotropy. Focusing on
simple systems without secondary magnetic lattices or elec-
tron/hole doping, including La2MO4 (M = Cu [22], Ni [26,
31], Co [25, 27, 32]), LaSrFeO4 [24] and Sr2CuO2Cl2 [23],
all of these compounds exhibit collinear orders without ex-
ception [Fig. 1(b)(c)]. In La2MO4 (M = Cu, Ni, Co), the
orthorhombic lattice distortion lifts the degeneracy and sta-
bilizes the collinear order [25, 26, 33]. In LaSrFeO4 and
Sr2CuO2Cl2, the lattice distortion is absent; the degeneracy
lifting mechanism is less clear though thermal or quantum
fluctuations are likely responsible [14, 30].

In this work, we investigate a much less characterized mem-
ber of this material family, LaSrCrO4 (LSCrO) [34–36]. Us-
ing neutron scattering measurements on a single crystal sam-
ple, we reveal a striking anticollinear magnetic ground state
[Fig. 1(d)] that is distinct from all the compounds mentioned
above. Combining theoretical analysis with various experi-
mental measurements, we show that the magnetic dipolar in-
teraction and the biquadratic spin exchange interaction, both
on the order of 10−5 (10 ppm) of the main exchange interac-
tion J1, are responsible for lifting the degeneracy and stabi-
lizing the anticollinear state in this material. Our results thus
establish LSCrO as a rare example where the degeneracy lift-
ing interactions with minuscule energy scales can be exposed
unambiguously.

Anticollinear order. We grow for the first time centimeter-
sized single crystals of LSCrO via the floating zone technique
[39]. X-ray and neutron diffraction measurements confirm
that it crystallizes in the tetragonal space group I4/mmm at
room temperature with lattice constants a = b = 3.87218(3)
Å, c = 12.516(1) Å [Fig. 2(a)], consistent with previous
reports [34, 36]. By using Rietveld refinement of the nu-
clear Bragg peaks measured at various temperatures, we found
no structural phase transitions down to 4 K. Similar to other
quasi-2D system [40], the magnetic ordering in LSCrO occurs
in two steps. At temperatures below 350 K, short-ranged 2D
Néel order develops gradually, evidenced by the increasing
magnetic scattering intensities at the M -point of the square
lattice Brillouin zone, which are diffuse along the L direction
[Fig. 2(b) and (d)].

Below TN = 170 K, the diffuse scattering quickly con-
centrates into sharp magnetic Bragg peaks at wave vectors
Q = (H + 1

2 ,K + 1
2 , L) in reciprocal space [Fig. 2(b)],

pinpointing a three-dimensional (3D) ordering of Cr3+ spins.
Interestingly, magnetic Bragg peaks are observed at Q with
both even and odd L [Fig. 2(b)(c)]. This observation can not
be explained by the 3D Néel order with a single ordering wave
vector, where the magnetic structure factor would be extinct at
either even or odd L [41]. In other words, the spins in adjacent

(a) (b)

FIG. 2. (a) Nuclear and magnetic unit cells (represented by solid and
dotted lines) of LSCrO. Colored spheres present different atoms and
red/black arrows presents Cr3+ spins that are orthogonal between
adjacent layers. Spin interactions J1, J2, D,K in Eqs. (1) and (2)
are labeled for selective Cr-Cr bonds. (b) Elastic neutron scatter-
ing patterns in the (HHL) plane, measured on SEQUOIA (Spallation
Neutron Source, Oak Ridge National Laboratory, Ref. [37]) at T =
240 K, and 5 K, respectively. Intensities are integrated within ±0.1
reciprocal-lattice unit (r.l.u.) in the [KK̄0] direction. (c) Rietveld
refinement of the magnetic reflections collected on HB3a (High Flux
Isotope Reactor, ORNL, Ref. [38]) at 4 K based on the magnetic
structure shown in (a). (d) Temperature dependence of the mag-
netic diffuse scattering intensity at Q = (0.5, 0.5, 0.5) and magnetic
Bragg peak intensity at Q = (0.5, 0.5, 1). The onset temperatures
and 2D and 3D magnetic ordering are indicated by the arrows.

planes cannot be strictly collinear. A Rietveld refinement of
magnetic Bragg peak intensities collected at 4 K indicates that
the magnetic structure is best fit by a 2-k model [k1 = (1/2,
1/2, 0) and k2 = (1/2, -1/2, 0)] with the ordered moment of
2.25(2)µB /Cr3+, characterized by the magnetic space group
PC42/ncm [42]. The resulting magnetic structure is shown
in Fig. 2(a), which is identical to the anticollinear structure
shown in Fig. 1(d).

Spin wave excitations. We investigate the low temperature
magnetic excitation spectrum of LSCrO using time-of-flight
neutron spectroscopy with various neutron incident energies
(Ei) [39]. Fig. 3(a) shows the overall energy-momentum de-
pendence of the measured dynamic structure factor S(q, ω)
along the high symmetry directions of the 2D Brillouin zone,
where the scattering intensities are integrated along the L di-
rection. An intense and dispersive spin wave band emanates
from the M -point. Its intensities gradually diminish when
moving to the Γ point. The spin wave shows almost no disper-
sion from the X point to the Y point, suggesting that further-
neighbor exchange couplings [43] and quantum anomaly ef-
fects [44] are small.

Using a lower incident energy, Ei = 20 meV, and there-
fore better energy resolution, we identify an energy gap of
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Ei = 120 meV, T = 5 K
(a)

(b) (c) (d)

FIG. 3. (a) Spin wave excitations along high symmetry directions in
the 2D Brillouin zone (inset) measured on SEQUOIA usingEi = 120
meV. Data are integrated within H,K= ±0.2 and L = ±8 r.l.u. The
flat modes near 10 and 20 meV are optical phonons at high L values.
(b) Dispersion along H near the M -point of the 2D Brillouin zone
measured at Ei = 20 meV. Data integration range is H(K)= ±0.03
and L = ±0.15 r.l.u. Dashed lines in (a) (b) represent best fit to Eq.
1 from LSWT. (c) Dispersion along [0.5, 0.5, L] measured at Ei =
8 meV. Data integration range is H,K= ±0.02 r.l.u. (d) Dynamic
magnetic susceptibility at the M -point, obtained by integrating the
data in (c). All data shown in this figure are collected at T = 5 K
and symmetrized according to the D4h point group symmetry of the
Cr3+ site.

4.5(1) meV in the M -point spectrum [indicated by arrows in
Fig. 3 (b)(d)]. We attribute this gap to the weak, easy-plane
single-ion anisotropy of the Cr3+ moments.

Given the large spin carried by the Cr3+ ions [electron con-
figuration t32g , S = 3/2], we expect that the observed spec-
trum can be understood in terms of the linear spin wave theory
(LSWT). We find that the following minimal model Hamilto-
nian, which includes the first (J1) and the second neighbor
(J2) exchange interactions, as well as an easy-plane single-
ion anisotropy (A), can well describe the in-plane dispersion
of the spin wave within the LSWT framework:

H0 = J1
∑
〈ij〉1

Si · Sj + J2
∑
〈ij〉2

Si · Sj +A
∑
i

(Szi )2, (1)

where the summation 〈ij〉n runs over n-th neighbor spin pairs.
We attain the best fit [dashed black lines in Fig. 3(a)(b)] with
J1 = 10.6(1) meV, J2 = 0.16(6) meV, A = 0.05(1) meV.
The energy scale of the J1 exchange is comparable to the on-
set temperature for the short-ranged 2D Néel order.

Finally, we examine the low energy dispersion along the L
direction at the M -point with the best energy resolution ob-
tained at Ei = 8 meV [Fig. 3(c)]. Remarkably, the spec-
trum is gaped throughout. As the gaps do not show discernible
L-dependence, we conclude that the interlayer couplings be-

tween Cr3+ spins of adjacent layers are smaller than the in-
strument resolution [> 0.1 meV]. By integrating L in Fig.
3(c) and avoiding regions where there is inelastic leakage from
magnetic Bragg peaks, we obtain the energy dependence of
dynamic susceptibility χ′′(Q, ω), which clearly reveals a sec-
ond, much smaller gap ∆ ≈ 0.5(1) meV [Fig. 3(d)].

The weak interlayer coupling is expected given the rela-
tive low 3D ordering temperature, kBTN/[J1S(S + 1)] =
0.391. As a crude estimate, we neglect the small easy-plane
anisotropy and utilize the published ordering temperatures of
the quasi-2D Heisenberg model as determined by quantum
Monte Carlo simulations [45, 46]. We estimate the interlayer
coupling is in the range of 10−6 meV to 10−3 meV [39].

Interlayer couplings. While the minimal model Eq. (1) can
produce the in-plane dispersion of the spin wave, it is silent on
the origin of the 3D magnetic structure. We now discuss the
interlayer couplings that can stabilize the anticollinear state of
LSCrO.

To set the stage, we determine the symmetry-allowed cou-
plings between the Néel vectors associated with the two sub-
lattices. The single ion anisotropy forces the Néel vectors to
lie in the plane. We parametrize the orientation of the Néel
vector in the sublattice A/B by the azimuthal angle φa/φb, re-
spectively [Fig. 1(a)]. The interaction energy can be expanded
as Fourier series of φa,b. Up to the 4th order harmonics, our
symmetry analysis yields three algebraically independent cou-
pling terms [39]: − sin(φa + φb),− cos(4φa)−cos(4φb), and
cos(2φa − 2φb). The signs at the front are needed to energet-
ically favor the anticollinear state, i.e. φa = 0, φb = π/2
(and symmetry-related configurations). Each term admits a
physical interpretation: The first term arises from the mag-
netic (pseudo) dipolar interaction; the second describes an
in-plane, four-fold symmetric single ion anisotropy; the last
comes from the biquadratic exchange interaction.

Stabilizing the anticollinear order found in LSCrO re-
quires the combination of either (a) dipolar interaction and
biquadratic exchange or (b) dipolar interaction and single-ion
anisotropy. Note the combination of the biquadratic exchange
and the single-ion anisotropy does not fully lift the accidental
degeneracy — it admits another, symmetry-inequivalent anti-
collinear state φa = 0, φb = −π/2 [Fig. 1(e)] in addition to
the state observed in LSCrO.

Among the two possible combinations, we find the first can
produce the correct spin flop transition observed in LSCrO
(see below). We thus arrive at the following minimal Hamil-
tonian for the interlayer coupling:

H′ =
∑
〈ij〉3

D(Si · Sj − 3(Si · n̂ij)(Sj · n̂ij))

+K(Si · Sj)2, (2)

where the summation is over all third-neighbor pairs. n̂ij is
the unit vector pointing from site i to site j. D > 0 and
K > 0 are strength of the dipolar and biqudratic couplings,
respectively.

Spin flop transitions. We now turn to the experimental test
of the model Eq. (2). A sensitive diagnostic for the interlayer
coupling is the spin flop transition driven by a magnetic field
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FIG. 4. (a)(b) The azimuthal angle of the Néel vectors, φa and φb,
as a function of the applied magnetic field H along (a) [110] and (b)
[100] directions. Inset: configurations of the Néel vectors at selective
fields. (c)(d) Differential magnetization at 2 K and 200 K, measured
with H applied along (c) [110] and (d) [100] directions. (e) Field
dependence of the magnetic Bragg peak intensities at Q = (0.5,0.5,0)
and Q = (0.5,0.5,1), measured at T = 2 K on the CORELLI diffuse
scattering spectrometer (SNS, ORNL, Ref. [47]) with magnetic field
applied along the [11̄0] direction. (f) Field dependence of the relative
velocity variation of the transverse mode propagating along x-axis
and polarized along the y-axis VLxPy , measured at T = 2 K for H
along the a-axis (black curve) and along the c-axis (blue curve).

applied within ab plane. The Zeeman coupling favors the Néel
vectors to be perpendicular to the field in each layer. When the
field is sufficiently strong, this effect can overcome the dipo-
lar/biquadratic interactions and stabilize a collinear state. The
resulting evolution from an anticollinear to a collinear mag-
netic structure thus offers a probe of the nature and strength
of the interlayer couplings.

Our theoretical analysis based on the model Eq. (2) reveals
distinct magnetization processes when field is aligned along
different high symmetry directions. Within increasing field
‖ [110], we find the angle between the Néel vectors of the two
sublattices gradually increase from π/2 to π, at which point
the system enters the collinear state. Meanwhile, the Néel
vectors remain symmetric with respect to the field [Fig. 4(a)].
The onset field of the collinear state is given by gµBµ0Hc =
16
√
J1KS4. Note this process is a crossover as opposed to a

phase transition in that no symmetry is spontaneously broken.
By contrast, with the field ‖ [100], the Néel vectors are

initially pinned to the anticollinear state [Fig. 4(b)]. A spin
flop transition occurs at Hc1, at which point the Néel vec-
tors are no longer orthogonal and evolve toward the collinear
state, whereby spontaneously breaking the π-rotation symme-

try with respect to [100]. The system enters the collinear state
at Hc2 although the collinear Néel vectors are not strictly or-
thogonal to the field. No symmetry breaking occurs at Hc2

and thus it constitutes a crossover. With increasing field, the
collinear Néel vectors continuously approach the limit where
they are orthogonal to the field. Hc1,c2 are determined by:

(gµBµ0Hc1)2

32J1
=
√
KD, (3a)

(gµBµ0Hc2)2

32J1
=

√
K2

2
+
K
2

√
K2 + 4D2, (3b)

where K = 8KS4 and D = 12a2DS2/(2a2 + c2).
These predictions are confirmed experimentally by our dc

magnetization measurements. The differential magnetization
in [110] direction shows a maximum near 5 T, correspond-
ing to the crossover from non-collinear to collinear states at
Hc [Fig. 4(c)]. By contrast, in the field ‖ [100], we observe
inflection points at 3.15(5) T and 5 T [Fig. 4(d)]. We iden-
tify the inflection near 3 T as the spin flop transition at Hc1

and the one near 5 T as the crossover at Hc2. This interpre-
tation is further supported by ultrasound velocity measure-
ments [Fig. 4(f)]. When the field is applied in the [100] di-
rection, the relative speed of transverse sound wave shows a
clear minimum at 3.27 T, indicative of a phase transition, but
no anomaly is found at 5 T. Meanwhile, neutron diffraction
measurement with field ‖ [110] reveals a gradual increase (de-
crease) of magnetic Bragg peak intensities with even (odd)
L values up to the highest measured magnetic field of 4 T
[Fig. 4(e)], consistent with the picture of a gradual rotation
of Néel vectors [Fig. 4(a)].

Using the experimentally measured value of Hc1 and Hc2

in the [100] direction, we estimate DS2 ≈ 1.4 × 10−4 meV
and KS4 ≈ 1.3 × 10−4 meV. Using these parameters, we
determine the crossover field µ0Hc ≈ 5 T in the [110] di-
rection, in agreement with the experiment. Meanwhile, the
LSWT predicts all four branches of the spin waves are gapped.
The interlayer interactions open two gaps with values 0.2 meV
and 0.6 meV. The 0.6 meV gap is consistent with the observed
spectral gap ∆[Fig. 3(d)], whereas the 0.2 meV gap is beyond
the energy resolution of our measurements.

We note that the alternative model for interlayer coupling,
namely the dipolar coupling and the four-fold symmetric
single-ion anisotropy, produces first-order spin flop transitions
in the [100] directions [39], which is inconsistent with the ex-
periment.

Discussion. Having established the nature and strength of
interlayer interactions [Eq. (2)], we now discuss their micro-
scopic origins. The dipolar coupling D may originate from
either the pseudo-dipolar coupling, commonly found in sys-
tems with strong spin-orbital coupling, or the magnetic dipo-
lar interaction. Given the filled t2g shell of Cr3+, we do not
expect significant spin-orbital coupling and thus rules out the
former possibility. Note that our case is very different from
isostructural compounds with a second, magnetic rare earth
sublattice, e.g. R2CuO4 (R = Ce, Pr, Nd) [41, 48–50], which
could mediate the pseudo-dipolar coupling [51]. Instead, we
findD is naturally attributed to the magnetic dipolar coupling.
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Our magnetostatic calculation yields DS2 ≈ 2 × 10−4 meV
based on refined moment of 2.25µB/Cr3+, consistent with
the estimate based on the spin flop field. Dipolar coupling
is known to be crucial for rare-earth magnets with ice-like
frustration [52–54] where the exchange interactions are small.
Our work demonstrates that it can also play an important role
in systems with comparatively much stronger exchange cou-
pling.

The positive biquadratic exchange interaction could be gen-
erated either by higher order virtual hopping processes in the
superexchange [55], or more likely by quenched disorder due
to the La/Sr mixing through the ObD mechanism [14, 16].
We also note that the combination of dipolar interaction and
a negative biquadratic exchange, produced by the thermal or
quantum ObD, would stabilize a collinear order with the spins
in the [110] direction, which may explain the 3D ordering in
Sr2CuO2Cl2 or LaSrFeO4. This observation motivates further
investigation of quenched disorder to control magnetic order
in frustrated magnets or spintronic devices.

The experimental observation of the anticollinear order in
LSCrO uncovers a new territory in the phase diagram of the
AB-stacked square-lattice antiferromagnet. In contrast to the
collinear magnetic states displayed by all related materials,
the anticollinear order in LSCrO exhibits a rich and unique
magnetic field evolution stemming from interlayer effects that

are merely a few parts-per-million of the main exchange in-
teraction. A systematic study of the temperature-field phase
diagram of LSCrO and its materials relatives is poised to re-
veal more surprises in this canonical family of geometrically
frustrated magnets.
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I. EXPERIMENTAL METHODS

A. crystal growth

Single Crystals of LaSrCrO4 were synthesized using a floating zone technique. In order to grow the single crystals, powder
sample was first synthesized from a stoichiometric mixture of La2O3 (baked before usage), SrCO3, and Cr2O3 under flowing
10%H2/Ar atmosphere at 1350 ◦C for 40h with several intermediate re-grindings. The synthesized powder was pressed into
cylindrical rods (of approximately 6 mm in diameter and 70–80 mm in length) and then melted at higher temperatures in a
two-mirror optical floating zone furnace (NEC, Conan Inc., equipped with two 1500W halogen lamps) under 1 atmosphere gas
of 4%H2/Ar. The best crystal was obtained using a growth voltage of 92 V and a pulling rate of 35 mm/h. Slight evaporation
of melted mixture was observed during growth. The obtained single crystal was black in color and naturally cleaves into
shining surfaces that are perpendicular to the crystallographic c-axis [Fig. S1 left], reflecting the quasi-2D nature of the layered
perovskite structure. The crystals were oriented by Laue back diffraction for subsequently measurements [Fig. S1 right].

B. Magnetic measurements

Magnetic susceptibility measurements were made using a Quantum Design Magnetic Properties Measurement System with a
superconducting interference device (SQUID) magnetometer. Measurements were made after cooling in zero field of µ0H= 1 T
over the temperature range 2 K to 300 K [Fig. S2 left]. A weak slope change was observed at the Néel temperature of 170 K.
Isothermal magnetization M(H) measurements were made using the same SQUID at temperatures of 2 K and 200 K between 0
and 6.5 T [Fig. S2 right].
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FIG. S1. Left: The single crystal used for the inelastic neutron scattering measurements at SEQUOIA. Right: Laue diffraction pattern along
the [001] direction of a single crystal LaSrCrO4.
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FIG. S2. Left: dc susceptibility under a magnetic field of 1 T that is applied along three high-symmetry directions. The increases of χ at low
temperature are due to Curie tails from magnetic impurities. Right: magnetization curves measured at 2 K and 200 K with field applied along
three high-symmetry directions.

C. Neutron-scattering measurements

Single crystal neutron diffraction measurements were carried out using the Four-Circle Diffractometer (HB3A) [38] at the
High Flux Isotope Reactor, and diffuse scattering measurements using the Elastic Diffuse Scattering Spectrometer (CORELLI)
[47] at the Spallation Neutron Source, both located at Oak Ridge National Laboratory. For the HB3A measurements, a small
single crystal was cooled down to a base temperature of 4 K, and measured using a constant neutron wavelength of λ = 1.003 Å.
For the CORELLI measurements, a single crystal was oriented in the (HHL) scattering plane and cooled down to 2 K using a
orange cryostat inside a 5 T superconducting magnet.

Inelastic neutron scattering measurements were carried out using the Fine-Resolution Fermi Chopper Spectrometer (SE-
QUOIA) [37] at the Spallation Neutron Source, Oak Ridge National Laboratory. A single crystal ∼3 g (size: 4 mm×40 mm×6
mm) [Fig. S1 left] was oriented in the (HHL) scattering plane cooled down to 5 K with a closed-cycle refrigerator. Magnon
excitations were mapped out with incident neutron energies of 120, 20, and 8 meV with sample rotation of 2◦/step. Constant
energy cut of the 120 meV dataset in the [HK0] scattering plane was summarized in Fig. S5. The data was integrated along L
direction and symmetrized according to the point group symmetry of the Cr site, resulting in the dispersion curve shown in the
main text.
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FIG. S3. (a) Powder XRD diffraction patterns of LaSrCrO4 at various temperatures between 300 K to 10 K, showing that there is no structural
phase transitions. (b) Structural refinements of the nuclear Bragg peaks measured using HB3A Four-circle diffractometer at 4 K. Gobs and
Gcalc represent observed and calculated intensities, respectively.

TABLE I. Crystallographic parameters and selected bond lengths for LaSrCrO4 for single crystal refinement of HB3a neutron diffraction data
at 4 K.

Space group: I4/mmm. T = 4 K
Atom x y z u11 (2) u22 (2) u33 (2) Occu.

La 0 0 0.35957(6) 0.0012(4) 0.0012(4) 0.0006(1) 0.5
Sr 0 0 0.35957(6) 0.0012(4) 0.0012(4) 0.0006(1) 0.5
Cr 0 0 0 0.0009(9) 0.0009(9) 0.0005(1) 1
O1 0.5 0 0 0.0043(7) 0.0043(7) 0.0009(1) 1.00(1)
O2 0 0 0.16553(8) 0.0128(4) 0.0128(4) 0.0009(1) 0.99(1)

a=b=3.853(6) , c=12.475(4)
Cr-O(1)=2.065(1)
Cr-O(2)=1.9265(8)

Rw = 4.6%, Rf = 2.7%, χ2 = 2.51%

D. Refinements of nuclear and magnetic structures

Rietveld refinements of the nuclear and magnetic structures are done using the 4 K neutron diffraction data measured at
HB3a. Nuclear reflections are collected for Bragg peaks at wave-vectors Q = (H,K,L), and magnetic reflections are collected
at Q = (H + 1/2,K + 1/2, L+ 1/2), where H,K,L are integer numbers.

Crystal structural refinement was carried out using the FULLPROF suite of programs. The observed nuclear Bragg peaks
intensities agrees well with layered perovskite structure of the I4/mmm space group. Refined crystallographic parameters are
given in TABLE I.

Magnetic structural analysis was carried out using the Bilbao Crystallographic Server [42] using two propagation vectors,
k1 = (0.5, 0.5, 0) and k2 = (0.5,−0.5, 0). The maximal magnetic space groups for I4/mmm space group and the two
propagation vectors are PC42/ncm, PC42/mbm, and PC42/nbm. PC42/ncm corresponds to the observed spin order in
LaSrCrO4. PC42/mbm corresponds a different anticollinear state, i.e., φa = 0, φb = −π/2 shown in Fig.1(e) of the main text.
PC42/nbm describe a Néel order with easy axis anisotropy, i.e. Néel order vectors are pointing along crystallographic c-axis.

E. Ultrasonic measurement

All measurements have been obtained using a single crystal with parallel faces normal to the crystallographic a-axis. 30
MHz LiNbO3 transducers were mounted on those faces in order to realized sound velocity measurements in the transmission
configuration. A sample of 4.08 mm in length, along the direction of propagation (x ‖ a-axis), was necessary in order to
determine the velocity of longitudinal modes VLx and transverse modes with a polarization along (y ‖ b-axis), VTxPy. The data,
realized at 90 MHz using a pulsed acoustic interferometer, were used to explore the spin flop transitions of LaSrCrO4 with the
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FIG. S4. Constant energy slices through the quasielastic scattering in the (HHL) plane at different neutron energy transfer measured on
SEQUOIA at T = 5 K, showing that the magnon excitations is dispersiveless along L direction. Data was measured with neutron incident
energy of 8 meV and integrated for [KK̄0] direction within K = [-0.02, 0.02] reciprocal lattice unit (r.l.u.).

field parallel the a and c-axis up to 14 T between 2 K and 200 K.

II. ESTIMATE THE ENERGY SCALE OF INTERLAYER COUPLING

The 3D Néel ordering temperature is relatively small compared to the intralayer exchange interaction in LaSrCrO4, i.e.,
kBTN/[J1S(S + 1)] = 0.391. The Néel temperature of a quasi-two-dimensional spin-S Heisenberg antiferromagnet is given
by [45, 46]:

kBTN
J1S(S + 1)

=
4πρs

b− ln (J ′/J1)
, (S4)

where ρs is the spin stiffness, b is a dimensionless constant, and J ′ is the interlayer coupling. As ρs and b are unknown for
S = 3/2, we utilize the published Néel temperature data for S = 1 and S = ∞ [46], obtained by quantum and classical
Monte Carlo simulations, respectively to constrain the value of J ′/J . Fitting the TN data for S = 1 to Eq. (S4) yields ρs =
0.68/S/(S + 1) = 0.34 and b = 3.12. Using the value of kBTN/[J1S(S + 1)] for LaSrCrO4 and solving for J ′, we obtain
J ′/J1 = 4.1× 10−4. On the other hand, fitting the TN data for S =∞ yields ρs = 0.84 and b = 10.9, from which we estimate
J/J1 = 1.1 × 10−7 in LaSrCrO4. These two estimates could be viewed as the upper and lower bounds on J ′/J in LaSrCrO4.
As J ∼ 10 meV in LaSrCrO4, we deduce that the order of magnitude of the interlayer coupling is between 10−3 meV and 10−6

meV, presumably closer to the upper limit.

III. SYMMETRY ANALYSIS FOR INTERLAYER COUPLING

The magnetic order of LaSrCrO4 comprises of two sublattices, each hosting a three-dimensional Néel order. In this section,
we perform the symmetry analysis on the coupling between the two Néel vectors .

Let φa (φb) be the azimuthal angle of the Néel vector of the A (B) sublattice. For the A sublattice (crystallographic site label
(i, j, k)), we define φa to be the angle between the spin on site (0, 0, 0) and the crystallographic a axis. For the B sublattice
(crystallographic site label (i + 1

2 , j + 1
2 , k + 1

2 )), we define φb to be the angle between the spin on site ( 1
2 ,

1
2 ,

1
2 ) and the

crystallographic a axis. Generically, the coupling between the two Neel vectors can be expanded as Fourier series:

E(φa, φb) =
∑
m,n

Cm,n cos(mφa + nφb) + Sm,n sin(mφa + nφb), (S5)
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FIG. S5. Constant energy slices through the inelastic scattering in the (HK0) scattering plane at different neutron energy transfer measured
on SEQUOIA at T = 5 K. Data was measured with neutron incident energy of 120 meV and integrated along L direction within L = [-5, 5]
reciprocal lattice unit (r.l.u.)

where m,n run over all integers. Cm,n and Sm,n are real coefficients.
We use symmetry to constrains the possible form of E(φa, φb). To this end, we use the fact that the space group I4/mmm

is symmorphic; it is therefore sufficient to consider the operations of the point group D4h. The point group D4h is generated a
4-fold rotation with respect to the crystallographic c axis (C4), a mirror operation whose norm is along the crystallographic a
axis (m), and an spatial inversion i. Without loss of generality, we take the 4-fold axis and the mirror plane pass through an A
site. We find:

(φa, φb)
C4→ (φa +

π

2
, φb −

π

2
); (φa, φb)

m→ (−φa, π − φb). (S6)

Meanwhile, under the time reversal operation:

(φa, φb)
T→ (φa + π, φb + π). (S7)

Finally, the inversion exchanges φa and φb. As a result, the interaction must be symmetric with respect to φa,b:

E(φa, φb) = E(φb, φa). (S8)

These symmetries are sufficient to constrain the interactions; adding more symmetries do not yield more independent constrains.
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The exchange symmetry between A and B sublattices constrains the harmonics must come in pairs:

cos(mφa + nφb) + cos(nφa +mφb), sin(mφa + nφb) + sin(nφa +mφb). (S9)

Under the mirror operation, these terms become:

(−)n cos(mφa + nφb) + (−)m cos(nφa +mφb), (−)n+1 sin(mφa + nφb) + (−)m+1 sin(nφa +mφb). (S10)

These conditions require that, for the cos harmonics, both m and n must be even; whereas, for the sin harmonics, both m and n
must be odd. These conditions automatically enforce the time reversal symmetry.

The remaining task is to enforce the C4 symmetry. Note the symmetry operations cannot mix harmonics of different orders
(m,n). Meanwhile, the parity of (m,n) are distinct for the cos terms and sin terms. It follows that cos terms and sin terms
cannot mix under symmetry operations. Said differently, the cos terms must transform to itself, and so do the sin terms. On the
other hand, under the action of C4:

cos(mφa + nφb) + cos(nφa +mφb)→ (−1)
m−n

2 [cos(mφa + nφb) + cos(nφa +mφb)],

sin(mφa + nφb) + sin(nφa +mφb)→ (−1)
m−n

2 [sin(mφa + nφb) + sin(nφa +mφb)]. (S11)

Here, we have used the fact that m− n is always an even number (and hence (m− n)/2 is an integer). The invariance requires
that m− n must be multiples of 4.

We are now ready to write down all the symmetry allowed interactions by their order of harmonics p = |m|+ |n|. Terms with
odd p are forbidden by symmetry. At p = 2, there is only 1 linearly independent, symmetry allowed term:

sin(φa + φb). (S12)

This term can be generated by the magnetic dipole coupling or the pseudo-dipolar coupling between the two sublattices. At
p = 4, there are 3 linearly independent, symmetry allowed terms:

cos(4φa) + cos(4φb), cos(2φa − 2φb), sin(3φa − φb) + sin(3φa − φb), cos(2φa + 2φb). (S13)

The first term can be generated by an in-plane single-spin crystalline anisotropic term. The second term can be interpreted as
the biquadratic exchange interaction. The third term does not have any obvious microscopic interpretations; however, it can be
viewed as a product of the p = 1 term with the cos(4φa) + cos(4φb) term. Likewise, the last term can be viewed as the square
of the p = 1 term. Thus, the last two terms are not algebraically independent.

Keeping algebraically independent terms up to p = 4, we arrive at the two minimal models for the interlayer coupling. The
first model, which we dub the dipole-biqaudratic model, is given by:

E(φa, φb) = S1,1 sin(φa + φb) + C2,−2 cos(2φa − 2φb). (S14)

Stabilizing the anticollinear state in LaSrCrO4 require S1,1 < 0 and C2,−2 > 0. Minimizing the energy yields four symmetry-
related solutions: φa = 0, φb = π/2; φa = π, φb = −π/2; φa = π/2, φb = 0; and φa = −π/2, φb = π. Microscopically, the
dipole-biquadratic model consists of both dipole and biquadratic exchange interaction between spins between the third neighbor
pairs:

H ′ =
∑
〈ij〉3

D(Si · Sj − 3(Si · n̂ij)(Sj · n̂ij)) +K(Si · Sj)2. (S15)

Here, the summation is over all third neighbor bonds. n̂ij is the unit vector pointing from site i to site j. D > 0 and K > 0 are
model parameters.

The second model, which we dub the dipole-anisotropy model, is given by:

E(φa, φb) = S1,1 sin(φa + φb) + C4,0(cos(4φa) + cos(4φb)). (S16)

Stabilizing the anticollinear state found in LaSrCrO4 require S1,1 < 0 and C4,0 < 0. Microscopically, this model consists of
dipole interaction between spins on adjacent layers, and a single-ion anisotropy term:

H ′ =
∑
〈ij〉3

D(Si · Sj − 3(Si · n̂ij)(Sj · n̂ij)) +
A′

2

∑
i

((Sxi )2(Syi )2 + (Syi )2(Sxi )2). (S17)

Here, D > 0 and A′ > 0 are model parameters.
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IV. SPIN FLOP TRANSITIONS OF THE DIPOLE-BIQUADRATIC MODEL

In this section, we analyze the spin flop transitions of the dipole-biquadratic model. We determine analytically the critical
field and the magnetization curve. These analytic results allow us to estimate the strength of the effective dipole coupling
and the biquadratic coupling. In our calculations, we assume that the nearest neighbor Heisenberg exchange interaction J1 is
significantly larger than the Zeeman energy as well as all the other spin interactions.

A. Field along the [100] direction

We first consider the spin flop transitions when the field is applied along the [100] direction. In the absence of magnetic field,
the spins belonging to the even layers (dubbed A sublattice) form a three-dimensional Néel order, whereas thee spins belonging
to the odd layers (dubbed B sublattice) form another three-dimensional Néel order. Since the Zeeman energy is significantly
weaker than the nearest neighbor exchange interaction, the Néel orders are only slightly distorted. Let the φa and φb be the
azimuthal angle of the Neel vectors in the A and B sublattices, respectively. Here, φa (φb) is defined as the azimuthal angle of
the spin on site (0, 0, 0) ((1/2, 1/2, 1/2)). The energy of these two subsystems in the presence of the magnetic field is given by:

E

N
= − (gµBB)2

32J1
(sin2 φa + sin2 φb), (S18)

where N is the total number of spins, g the Landé g-factor, µ0 the Bohr magneton. This energy alone favors both Néel vectors
to be orthogonal with the field; it must compete with the dipole/biquadratic coupling between the two subsystems,

E′

N
= 4KS4 cos2(φa − φb)−

12a2

2a2 + c2
DS2 sin(φa + φb). (S19)

Here, a and c are the lattice constants. The magnetic ground state is determined by minimizing the total energy:

Etot = E + E′. (S20)

It is convenient to define a new pair of variables:

φ+ = φa + φb; φ− = φa − φb. (S21)

We rewrite the total energy as,

Etot

N
= B cosφ+ cosφ− +

K
2

cos2 φ− −D sinφ+. (S22)

Here, we have defined a set of parameters for the sake of brevity:

B =
(gµBB)2

32J1
; K = 8KS4; D =

12a2

2a2 + c2
DS2. (S23)

The stationary condition is thus given by:

sinφ−(B cosφ+ +K cosφ−) = 0; B sinφ+ cosφ− +D cosφ+ = 0. (S24)

The Hessian matrix is given by:

M =

[
−B cosφ+ cosφ− −K cos 2φ− B sinφ+ sinφ−

B sinφ+ sinφ− −B cosφ+ cosφ− +D sinφ+

]
. (S25)

We find three solutions to the stationary condition. They are:

• Orthogonal state. This state is identical to the zero-field magnetic ground state. It is corresponds to:

φ+ =
π

2
; φ− = ±π

2
. (S26)

The Hessian matrix reads:

M =

[
K ±B
±B D

]
. (S27)

The stability of this state requires

B2 ≤ B2c1 = KD. (S28)



14

• Collinear state. In this state, the two Néel vectors are collinear. They correspond to the following two symmetry related
solutions:

φ− = 0, φ+ = π − arcsin
D√
B2 +D2

. (S29a)

or

φ− = π, φ+ = arcsin
D√
B2 +D2

. (S29b)

The Hessian matrix reads:

M =

[
B2

√
B2+D2

−K 0

0 B2
√
B2+D2

]
. (S30)

The stability of this state requires

B2 > B2c2 =
K2

2
(1 +

√
1 +

4D2

K2
). (S31)

• Intermediate state. In this state, the Néel vectors are neither orthogonal nor collinear. It corresponds to the solutions:

φ+ = arcsin
KD
B2 , φ− = ±(π − arccos

(
B
K

√
1− K

2D2

B4

)
), (S32a)

and

φ+ = − arcsin
KD
B2 , φ− = ± arccos

(
B
K

√
1− K

2D2

B4

)
. (S32b)

Apparently, this state exists if and only if:

B2c1 ≤ B2 ≤ B2c2. (S33)

To conclude, at low magnetic field (B < Bc1), the system is in the orthogonal state; at intermediate field (Bc2 < B < Bc1),
the system is in the intermediate field; at high field (Bc2 < B), the system is in the collinear state.

We now compute the magnetization curve. The magnetization parallel (M‖) and orthogonal (M⊥) to the magnetic field is
given by:

M‖

N
=

(gµB)2B

16J1
(1− cosφ+ cosφ−);

M⊥

N
= − (gµB)2B

16J1
sinφ+ cosφ−. (S34)

Using the previously obtained solutions for φ±, we find:

M‖

N
=

(gµB)2B

16J1
×


1 (B ≤ Bc1)

1 + B
K − KD

2

B3 (Bc1 ≤ B ≤ Bc2)
1 + B√

B2+D2
(Bc2 ≤ B)

; (S35a)

M⊥

N
=

(gµB)2B

16J1
×


0 (B ≤ Bc1)

±DB
√

1− K2D2

B4 (Bc1 ≤ B ≤ Bc2)

± D√
B2+D2

(Bc2 ≤ B)

(S35b)

In the expression for M⊥, the plus and minus signs correspond to the two symmetry-related magnetic ground states.
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B. Field along the [110] direction

When the field is applied along the [110] direction, the total energy now reads:

Etot

N
= B sinφ+ cosφ− +

K
2

cos2 φ− −D sinφ+. (S36)

Here, the definition of φ±, B, K, and D are the same as before. In comparison with the energy in [110] field, the energy due to
the magnetic field (the first term) changes its form, whereas the other two terms stay the same. The stationary condition reads:

sinφ−(B sinφ+ +K cosφ−) = 0; cosφ+(B cosφ− −D) = 0. (S37)

The Hessian matrix reads:

M =

[
−B sinφ+ cosφ− −K cos 2φ− −B cosφ+ sinφ−

−B cosφ+ sinφ− −B sinφ+ cosφ− +D sinφ+

]
. (S38)

We find three solutions to the stationary condition:

• Noncollinear state. This state is characterized by:

φ+ =
π

2
; φ− = ±(π − arccos

(B
K

)
). (S39)

The Hessian matrix reads:

M =

[
K − B2

K 0

0 B2

K +D

]
. (S40)

The stability of this state requires:

B ≤ Bc = K. (S41)

• Collinear state. In this state, the two Néel vectors are collinear. It corresponds to the solution:

φ+ =
π

2
; φ− = π. (S42)

The Hessian matrix reads:

M =

[
B − K 0

0 B +D

]
. (S43)

The stability requires:

B ≥ Bc = K. (S44)

• Finally, there is an unstable solution:

sinφ+ = −KDB2 ; cosφ− =
D
B . (S45)

The Hessian matrix is given by:

M =

[
K(1− D2

B2 ) ∗
∗ 0

]
. (S46)

The Hessian matrix is not positive semi-definite for all values of K,D,B. Therefore, this solution is unstable over the
entire parameter space.

To conclude, at low field (B < Bc), the system is in a non-collinear state which is adiabatically connected to the zero-field
state; at high field (B < Bc), the system enters the collinear state.

We now compute the magnetization curve. The magnetization parallel (M‖) and orthogonal (M⊥) to the magnetic field is
given by:

M‖

N
=

(gµB)2B

16J1
(1− sinφ+ cosφ−);

M⊥

N
= − (gµB)2B

16J1
cosφ+ cosφ−. (S47)

Using the previously obtained solutions for φ±, we find M⊥ = 0 over the entire field range, whereas M‖ is given by:

M‖ =
(gµB)2B

16J1
×
{

1 + B
K (B ≤ Bc)

2 (B ≥ Bc) . (S48)
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V. SPIN WAVE GAPS OF THE DIPOLE-BIQUADRATIC MODEL

In this section, we compute analytically the spin wave gaps of the dipole-biquadratic model. We shall see that the value of
the gaps is directly related to the strength of the effective dipole and biquadratic interactions. In our calculation, we make the
simplifying assumptions that the nearest neighbor Hesienberg exchange interaction J1 is significantly larger than all the other
energy scales present in this system.

The Hamiltonian reads:

H =
∑
〈ij〉1

J1Si · Sj +
∑
〈ij〉3

D(Si · Sj − 3(Si · n̂ij)(Sj · n̂ij)) +K(Si · Sj)2 +A
∑
i

(Szi )2. (S49)

The first summation over all the nearest neighbor bond describes the dominant intra-layer coupling. The second summation over
all the third neighbor bonds describes the weak coupling between the adjacent layers. The last summation over all lattice sites
describes the easy plane spin anisotropy. We have omitted J2 and J3 couplings as their contribution to the spin wave gap is
second order.

We partition the lattice into four sublattices, which we dubbed as A1, A2. B1, and B2. The spin orientations are given by (in
crystallographic axes):

SA1 = S(1, 0, 0); SA2 = S(−1, 0, 0); SB1 = S(0, 1, 0); SB2 = S(0,−1, 0); (S50)

As the lowest energy spin wave excitations are all rigid rotations within the magnetic sublattices, we may set the spins in the
same sublattice to take the same orientation. This reduces the Hamiltonian to the following:

H = NJ1(SA1 · SA2 + SB1 · SB2) +
∑

α=A1,2

∑
β=B1,2

Hα,β +
NA

4

∑
α=A1,2,B1,2

(Szα)2, (S51a)

where

Hα,β = NK(Sα · Sβ)2 +ND

[
Sα · Sβ −

3c2

2a2 + c2
ScαS

c
β −

3a2

2a2 + c2
(Saα ± Sbα)(Saβ ± Sbβ)

]
. (S51b)

Here, the plus (minus) sign is for the pair A1/B1 and A2/B2 (A1/B2 and A2/B1). N is the number of spins.
In the next step, we choose the local spin frames such that the local Sz axis coincides with the spin direction in the magnetic

ground state. We choose the crystallographic c axis as the local Sx axis. We further expand:

Sxi ≈
√
Sui; Syi ≈

√
Svi; Szi ≈ S −

u2i + v2i
2

. (S52)

Substituting the above into the Hamiltonian, and expanding to the quadratic order, we obtain:

H ≈ N

2
uMuuu+

N

2
vMvvv, (S53)

where the u and v are column vectors:

u =

uA1

uA2

uB1

uB2

 , v =

vA1

vA2

vB1

vB2

 . (S54)

The Hessian matrices read:

Muu = S


J1 + A

2 + 2αD J1 −2βD −2βD
J1 J1 + A

2 + 2αD −2βD −2βD
−2βD −2βD J1 + A

2 + 2αD J1
−2βD −2βD J1 J1 + A

2 + 2αD

 ; (S55a)

Mvv = S

J1 + 4KS2 + 2αD −J1 −2KS2 + αD −2KS2 + αD
−J1 J1 + 4KS2 + 2αD −2KS2 + αD −2KS2 + αD

−2KS2 + αD −2KS2 + αD J1 + 4KS2 + 2αD −J1
−2KS2 + αD −2KS2 + αD −J1 J1S + 4KS2 + 2αD

 . (S55b)
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Here, we have used short-hand notation:

α =
3a2

2a2 + c2
; β = 1− α =

c2 − a2
2a2 + c2

. (S56)

The Lagrangian of the model reads:

L =
N

4
uT v̇ −H. (S57)

The equations of motion are thus:

v̇ = −4Muuu; u̇ = 4Mvvv. (S58)

The spin wave frequencies ωi are obtained by diagonalizing the dynamical matrix:

16Spec(MuuMvv) = {ω2
i }. (S59)

We are now ready to compute the spin wave frequencies. We note the following unitary transformation

U =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , (S60)

simultaneously diagonalize the matrices Muu and Mvv:

U†MuuU = S


2J1 + A

2 + 2αD − 4βD
A
2 + 2αD

2J1 + A
2 + 2αD + 4βD

A
2 + 2αD

 ;

U†MvvU = S

4αD
2J1 + 4KS2 + 2αD

8KS2

2J1 + 4KS2 + 2αD

 . (S61)

Thus, the spin wave frequencies are:

ω1 = 4S

√
(2J1 +

A

2
+ 2αD − 4βD)4αD ≈ 8S

√
2J1αD; (S62)

ω2,4 = 4S

√
(2J1 + 4KS2 + 2αD)(

A

2
+ 2αD) ≈ 4S

√
J1(A+ αD); (S63)

ω3 = 4S

√
(2J1 +

A

2
+ 2αD + 4βD)8KS2 ≈ 16S2

√
J1K; (S64)

VI. MAGNETIC DIPOLE INTERACTION

In this section, we compute the magnetic dipole interaction energy between the two sublattices in LaSrCrO4. Similar to the
previous sections, we partition the system into two sublattices, dubbed A and B. The A sublattice consists of the sites with
crystallographic label (i, j, k), whereas the B sublattice consists of the sites with label (i+ 1

2 , j + 1
2 , k + 1

2 ).
Each of the two sublattices hosts a three-dimensional Néel order with the Néel vector lying in the crystallographic ab plane.

We parametrize the Néel vectors by the azimuthal angles φa and φb. Here, φa (φb) is defined as the azimuthal angle of the spin
on site (0, 0, 0) ((1/2, 1/2, 1/2)).

We may write the magnetic dipole energy as:

Edip = EAA + EAB + EBB . (S65)
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where E00 and E11 are the intra-sublattice energy and E01 the inter-sub-lattice energy. The intra-sublattice energy E00 is given
by:

E00 =
N

4

µ0m
2

4πa3

∑′

ijk

(−1)i+j

[i2 + j2 + η2k2]3/2
− 3

(−1)i+j(i cosφa + j sinφa)2

[i2 + j2 + η2k2]5/2

=
N

4

µ0m
2

4πa3

∑′

ijk

(−1)i+j

[i2 + j2 + η2k2]3/2
− 3

2

(−1)i+j(i2 + j2)

[i2 + j2 + η2k2]5/2
. (S66)

In the first line, we have used the translation symmetry; in the second line, we have used the symmetry properties to simplify the
sum:

∑
ij = 0,

∑
i2 =

∑
j2. The factor of N/2 comes from the number of sites in sublattice A; another factor of 1/2 comes

from double counting. η ≡ c/a characterizes the lattice geometry. We thus may write EAA as:

EAA
N

=
A

2

µ0m
2

4πa3
, (S67)

where the numeric constant:

A =
1

2

∑′

ijk

(−1)i+j
− 1

2 (i2 + j2) + η2k2

[i2 + j2 + η2k2]5/2
. (S68)

Inversion symmetry immediate implies EBB = EAA. The remaining term is EAB :

EAB =
N

2

µ0m
2

4πa3

∑
ijk

(−1)i+j cos(φa − φb)
[(i− 1

2 )2 + (j − 1
2 )2 + η2(k − 1

2 )2]3/2

− 3
(−1)i+j [(i− 1

2 ) cosφa + (j − 1
2 ) sinφa][(i− 1

2 ) cosφb + (j − 1
2 ) sinφb]

[(i− 1
2 )2 + (j − 1

2 )2 + η2(k − 1
2 )2]5/2

=
N

2

µ0m
2

4πa3
×−3

∑
ijk

(−1)i+j(i− 1
2 )(j − 1

2 ) sin(φa + φb)

[(i− 1
2 )2 + (j − 1

2 )2 + η2(k − 1
2 )2]5/2

. (S69)

In the first line, we have used the translation symmetry. The factor ofN/2 comes from the number of sites in sublattice 0. There is
no double counting factor. In the second line, we have used the symmetry properties:

∑
(−1)i+j = 0,

∑
(−1)i+j(i−1/2)2 = 0,

etc. We thus write:

EAB
N

= A′
µ0m

2

4πa3
sin(φa + φb), (S70)

where the numeric constant

A′ = −3

2

∑
ijk

(−1)i+j
(i− 1

2 )(j − 1
2 )

[(i− 1
2 )2 + (j − 1

2 )2 + η2(k − 1
2 )2]5/2

. (S71)

Using the lattice constants a = 3.872 Å and c = 12.516 Å, a direct numerical summation of the series revealsA′ = −4.2484×
10−2. Taking the experimentally measured static moment m = 2.25µB , we obtain the coupling:

EAB
N

= −1.9891× 10−4 sin(φa + φb) (meV). (S72)

Meanwhile, using the dipole-biquadratic model, we find the coupling between the two sublattices read:

EAB
N

= − 12a2

2a2 + c2
DS2 sin(φa + φb) = −0.964DS2 sin(φa + φb). (S73)

Comparing the two, we obtain:

DS2 = 2.063× 10−4 meV. (S74)
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FIG. S6. (a) Spin flop transitions of the D-A model in [100] field. (b) Magnetization curve for typical model parameters.

VII. SPIN FLOP TRANSITIONS OF THE DIPOLE-ANISOTROPY MODEL

In this section, we discuss the spin flop transitions of the dipole-anisotropy model. When the field is along the [100] direction,
the model exhibits a first order spin flop transition, at which the magnetization curve shows a sudden jump. This is inconsistent
with the experimental results.

The analysis of the spin flop transitions of the dipole-anisotropy model is similar to that of the dipole-biquadratic model. We
consider the case with the field ‖ [100]. Again, we divide the system into A and B sublattices, each hosts a three-dimensional
Néel order parametrized by the azimuthal angle φa (φb). The total energy reads:

Etot

N
= − (gµ0B)2

32J1
(sin2 φa + sin2 φb)−

12a2

2a2 + c2
D sin(φa + φb) +

A′S4

8
(sin2 2φa + sin2 2φb). (S75)

Here, the first term is the energy due to the magnetic field; the second the dipolar interaction; and the third the magnetocrystalline
spin anisotropy. We define φ+ = φa + φb and φ− = φa − φb, and rewrite the energy as:

Etot

N
= B cosφ+ cosφ− −D sinφ+ −

A
4

cos 2φ+ cos 2φ−, (S76)

where B,D have been defined before, and

A =
A′S4

2
, (S77)

is the energy scale of the spin anisotropy energy. The stationary condition reads:

sinφ−(−B cosφ+ +A cos 2φ+ cosφ−) = 0; sinφ+(−B cosφ− +A cos 2φ− cosφ+)−D cosφ+ = 0. (S78)

The Hessian matrix reads:

M =

[
−B cosφ+ cosφ− +A cos 2φ+ cos 2φ− B sinφ+ sinφ− −A sin 2φ+ sin 2φ−
B sinφ+ sinφ− −A sin 2φ+ sin 2φ− −B cosφ+ cosφ− +D sinφ+ +A cos 2φ+ cos 2φ−

]
. (S79)

We find two locally stable solutions:

• Orthogonal state. This state is identical to that of the zero-field state. It corresponds to the following solution:

φ+ =
π

2
; φ− = ±π

2
(S80)

The Hessian matrix reads:

M =

[
A ±B
±B A+D

]
. (S81)
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The stability requires:

B2 ≤ B2s1 = A(A+D). (S82)

The energy of this state is:

Etot

N
= −D − A

4
. (S83)

• Collinear state. In this state, the Néel vectors are collinear. The angles are determined by the following transcendental
equation:

φ− = 0; A sinφ+ cosφ+ = D cosφ+ + B sinφ+. (S84)

We define B =
√
B2 +D2 cos θ and D =

√
B2 +D2 sin θ. The equation now reads:

sin(φ+ + θ) =
A√
B2 +D2

sinφ+ cosφ+. (S85)

Numerically, it is much more convenient to seek the minimum of the energy function:

Etot

N
=
√
B2 +D2 cos(φ+ + θ)− A

4
cos 2φ+. (S86)

The Hessian matrix reads:

M =

[
−B cosφ+ +A cos 2φ+ 0

0 −B cosφ+ +A cos 2φ+ +D sinφ+

]
. (S87)

We expect that the collinear state is stable when B ≥ Bs2, where Bs2 must be determined numerically.

We have numerically determined the value of Bs1 and Bs2 and mark the region of local stability for both orthogonal and
collinear states. We find that Bs1 ≤ Bs2. This implies that there is a region where both local minima are stable — this indicates
a first order transition. We therefore must determine the transition by comparing the energy at these local minima.

The magnetization:

M‖

N
=

(gµ0)2B

16J1
×
{

1 (B ≤ Bc)
1− cosφ+ (Bc ≤ B)

; (S88)

M⊥

N
=

(gµ0)2B

16J1
×
{

0 (B ≤ Bc)
± sinφ+ (Bc ≤ B)

(S89)

The angle φ+ has to be determined by solving the equation.
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