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ABSTRACT: The spin−orbit-assisted Mott insulator α-RuCl3
is proximate to the coveted quantum spin liquid (QSL)
predicted by the Kitaev model. In the search for the pure
Kitaev QSL, reducing the dimensionality of this frustrated
magnet by exfoliation has been proposed as a way to enhance
magnetic fluctuations and Kitaev interactions. Here, we perform
angle-dependent tunneling magnetoresistance (TMR) measure-
ments on ultrathin α-RuCl3 crystals with various layer numbers
to probe their magnetic, electronic, and crystal structures. We
observe a giant change in resistance, as large as ∼2500%, when
the magnetic field rotates either within or out of the α-RuCl3
plane, a manifestation of the strongly anisotropic spin
interactions in this material. In combination with scanning
transmission electron microscopy, this tunneling anisotropic magnetoresistance (TAMR) reveals that few-layer α-RuCl3
crystals remain in the high-temperature monoclinic phase at low temperatures. It also shows the presence of a zigzag
antiferromagnetic order below the critical temperature TN ≃ 14 K, which is twice the one typically observed in bulk samples
with rhombohedral stacking. Our work offers valuable insights into the relation between the stacking order and magnetic
properties of this material, which helps lay the groundwork for creating and electrically probing exotic magnetic phases such as
QSLs via van der Waals engineering.
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INTRODUCTION
The quantum spin liquid (QSL) is an elusive state of matter in
which quantum fluctuations and magnetic frustration generate
long-range quantum entanglement and prevent magnetic
ordering down to zero temperature.1−3 One prominent type
of QSLis predicted by the exactly solvable Kitaev model.4 The
Kitaev QSL has two varieties of fractional excitation, Majorana
Fermions and fluxes, as its elementary excitations. The unusual
quantum statistics of these excitations make it promising for
topological quantum computation.5 It was later shown that this
model could be materialized in spin−orbit-assisted Mott
insulators with bond-dependent Ising interactions.6,7 The
ensuing search for candidate Kitaev materials led to the
emergence of α-RuCl3, a van der Waals material, as one of the
main prospects.8−11 Despite early studies reporting an
unconventional continuum of magnetic excitations,12−14 α-
RuCl3 presents a zigzag antiferromagnetic (AFM) ground
state, which preempts the realization of a pure QSL ground
state. Nevertheless, this magnetic order can be quenched by

applying an in-plane magnetic field larger than a critical field
Bc, typically on the order of 6−8 T.15−19 The report of half-
integer quantization of the thermal Hall conductance just
above this critical field generated huge interest, as it provided
strong evidence of a Kitaev QSL phase in this field regime.20

Yet, because of reproducibility issues caused by sample
variations,21−23 other approaches are currently being explored
to suppress magnetic order and enhance Kitaev interaction in
α-RuCl3.
A tantalizing route to realizing a true Kitaev QSL in α-RuCl3

is to reduce its dimensionality via mechanical exfoliation in
order to enhance order parameter fluctuations. Raman
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spectroscopy studies reported robust magnetic fluctuations
down to the monolayer as well as the presence of lattice
distortions,24−26 which were also observed by low-energy
electron diffraction measurements.27 Such mechanical strain
may alter the magnetic phase of the monolayer, as suggested by
ab initio calculations.28 Recent tunneling studies also reported
these distortions29 and found that they can lead to a reversal of
the magnetic anisotropy to easy-axis anisotropy for monolayer
samples.30 Furthermore, the van der Waals nature of α-RuCl3
allows for the manipulation and investigation of its magnetic
state by coupling it to other two-dimensional (2D) materials.
Electronic transport and optical studies on α-RuCl3/graphene
heterostructures reported a large charge transfer between the
two layers,31−34 in agreement with first-principles calcula-
tions.35−37 Transport measurements on these heterostructures
also revealed proximity effects at low temperatures, hinting at
the presence of an ordered magnetic ground state in exfoliated
α-RuCl3 crystals.26,32 However, the magnetic and crystal
structures of these flakes remain mostly unknown. In
particular, the relation between the stacking order and
magnetic properties of this material remains poorly under-
stood, even for bulk crystals.21

Here, we investigate the magnetic and crystal structure of
few-layer α-RuCl3 flakes by measuring their angle-dependent

tunneling magnetoresistance (TMR) (Figure 1a). This device-
oriented technique, which has proven successful in studying
other 2D magnets,30,38−48 provides a sensitive and versatile
tool to probe magnetism in nanoscale materials. Unlike other
2D materials, we observe a giant anisotropy of the TMR in α-
RuCl3. This effect enables us to track the magnetic phase
diagram and magnetocrystalline anisotropy of α-RuCl3 flakes
with thicknesses ranging from 3 to 18 layers. Our results
indicate that they host an AFM ground state with enhanced
critical field and temperature compared to most bulk samples,
and have a monoclinic crystal structure, which is supported by
a high-resolution scanning transmission microscopy (STEM)
study of isolated flakes. We use this knowledge to calculate the
electronic structure of few-layer α-RuCl3 and quantitatively
explain our TMR measurements.

RESULTS
Transport in Graphite/α-RuCl3/Graphite Heterostruc-

tures. Our magnetic tunnel junctions (MTJ) are made by
placing an exfoliated α-RuCl3 flake between two graphite
flakes, capped by a crystal of hBN (see Methods and
Supporting Information, Figure S1 for details on device
fabrication). The graphite contacts are arranged in a cross
geometry, allowing for precise four-probe measurements of the

Figure 1. Graphite/ α-RuCl3/graphite MTJs. (a) Schematic representation of electron tunneling in a van der Waals heterostructure under an
external magnetic field B (red arrow). The heterostructure comprises two graphite sheets separated by an α-RuCl3 barrier with N = 3 layers.
It is covered by a flake of hBN and deposited on a SiO2/Si substrate. The direction of the B field is defined by azimuthal angle ψ and polar
angle θ. (b) Temperature dependence of conductance G of the trilayer device (N = 3) at zero field and V = 0.4 V. Inset: Optical image of a
trilayer MTJ. α-RuCl3 is colored orange for clarity. The top (GT) and bottom (GB) graphite are deposited on top of the Au/Ti contacts. Vapp
represents the voltage applied to the lead while V is the voltage measured across the junction. The scale bar is 10 μm. (c) Current density J =
I/A (A is the area of the junction) as a function of V for MTJs with various numbers N of the α-RuCl3 layer at zero field and 1.8 K. (d) Plot of
ln(I/V2) as a function of 1/V for the same measurement as in (c). The black lines are linear fits corresponding to the FN tunneling model.
Inset: αϕ0

3/2 vs N. The blue points are obtained from the fits shown in the main panel, while the dashed line is a linear fit to the data. (e)
Current I as a function of V measured at 1.8 K in a trilayer device under various values of the B field pointing along the b axis (see the inset
of b). Inset: Same data on a semilog scale. (f) Magnetoconductance δG of the trilayer device as a function of V for B = 7 and 14 T. The
maximum indicates the onset of the FN tunneling regime. Inset: The maximum magnetoconductance was measured at B = 14 T in devices
with different layer numbers N.
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tunneling conductance G = I/V that avoid unwanted
contributions from graphite magnetoresistance. The inset of
Figure 1b presents an optical image of a typical device
comprising a trilayer α-RuCl3 flake. The conductance of every
junction decreases in a thermally activated way as the junction
is cooled to a temperature T of about 30 K (Figure 1b). The
value of this activation energy is almost identical for all
junctions, regardless of the α-RuCl3 thickness, with an average
of ϕ0 = 0.26 ± 0.03 eV (see Supporting Information, Figure
S2). We attribute this behavior to thermionic transport over
the potential barrier of height ϕ0 formed at the graphite/α-
RuCl3 interface. This value of ϕ0 is consistent with a recent
scanning tunneling spectroscopy study on few-layer α-RuCl3/
graphite which indicates that upper bands are ∼0.3 eV above
the Fermi level.29

At low temperatures, the conductivity shows a weak
temperature dependence, indicating that transport across the
junction is dominated by electron tunneling. The strongly
nonlinear I−V curves measured at T = 1.8 K (Figure 1c) imply
that α-RuCl3 flakes behave as insulating barriers. At high bias,
the transport can be described by the Fowler−Nordheim (FN)

tunneling49 relation I eV V/2

0

0
3/2

, where = *tN m
q

4 2
3

(see

Figure 1d). Here, t = 0.6 nm is the layer thickness of α-RuCl3,
N is the number of layers, m* is the effective mass of carriers
along the tunneling direction, ℏ is the reduced Planck constant
and q is the elementary charge. The inset of Figure 1d shows a
linear relation between αϕ0

3/2 and N obtained from the FN fits.
Using the value of ϕ0 deduced from the temperature
dependence of G, we estimate the effective mass inside the
α-RuCl3 barrier to be m* ≃ 9 m0, where m0 is the free electron
mass. This large m* value reflects the highly correlated nature
of electrons and the resulting nondispersive bands in α-RuCl3,
as confirmed below by ab initio calculations.
Having established that electron tunneling through Mott-

insulating α-RuCl3 is the dominant transport mechanism at
low temperatures, we investigate the effect of applying an in-
plane magnetic field B on the transport properties. Figure 1e
shows a large increase in the tunneling current in the trilayer
junction, which implies that the tunneling probability is linked
to the field-dependent magnetic structure of α-RuCl3. The
junction magnetoconductance, which is defined has δG =
[G(B, V) − G(0, V)]/G(0, V) and plotted in Figure 1f, reaches

a peak at finite bias. As observed in other MTJs,41,48 this peak
corresponds to the onset of the FN tunneling regime. As we
demonstrate below, the magnetoconductance in this regime
can be well described by a spin-dependent tunneling
model40,46,50 where the majority-spin electrons experience a
lower energy barrier than that of minority-spin electrons. As a
result, our junctions display large (>3000%) magneto-
conductance under an in-plane magnetic field of 14 T. This
large magnetoconductance provides a sensitive probe to study
the magnetic structure of exfoliated α-RuCl3 flakes. Unless
otherwise specified, all measurements presented below are
obtained from the trilayer device. Other devices exhibit
qualitatively similar behavior and are presented in the
Supporting Information.

Magnetic Anisotropy. First, we examine the magnetic
anisotropy of α-RuCl3 crystals by measuring G as a function of
the orientation of B with respect to the c* axis (angle ψ, Figure
2a) and within the ab plane (angle θ, Figure 2b). While a large
increase of the conductance Gab is observed when B lies in the
ab plane, only a small decrease of Gc* (∼ −1%) is detected
when B is perpendicular to the α-RuCl3 plane (Figure 2c). We
attribute this negative δG to the positive magnetoresistance of
the graphite contacts.51 This leads to a giant tunneling
anisotropic magnetoresistance effect, TAMR = (Gab − Gc*)/
Gc*, as high as ∼2500%. This effect typically arises when
electrons are tunneling into a material with large spin−orbit
coupling and magnetic anisotropy,52,53 as is the case here. In α-
RuCl3, the spin−orbit coupling leads to an off-diagonal AFM
exchange interaction Γ that is comparable in size to the Kitaev
interaction.54−56 This Γ interaction forces the moments to lie
in the ac plane with a finite c-axis component, which gives rise
to the strong easy-plane magnetic anisotropy observed in bulk
crystals9−11,54,57 and the large out-of-plane TAMR we measure.
The in-plane magnetoconductance also displays significant

anisotropy (Figure 2b), resulting in an in-plane TAMR ratio,
(Gb − Ga)/Ga, of up to ∼120% at low temperatures. The 2-
fold symmetry of the TAMR is observed over the entire range
of the magnetic field (see Figure 2c and Supporting
Information, Figure S3). It also survives at a high temperature
(T > 100 K), far above the magnetic transition temperature
typically observed in α-RuCl3 (TN ≃ 7−14 K). This suggests
that this in-plane TAMR does not stem from a long-range
magnetic order but rather from the anisotropy of the spin

Figure 2. Angle-dependent magnetoconductance of a trilayer α-RuCl3 MTJ. (a) Polar plot of the normalized magnetoconductance δGnorm at
B = 14 T and T = 1.8 K as a function of ψ in the ac* plane. (b) Polar plot of the normalized magnetoconductance δGnorm at B = 14 T as a
function of θ in the ab plane at T = 1.8, 50, and 100 K. (c) Conductance G (left y axis) and magnetoconductance δG (right y axis) as a
function of B pointing along the three symmetry axes. These measurements, which were performed by sweeping B in both directions, did not
show any sign of hysteretic behavior. All measurements in this figure are performed with Vapp = 0.4 V. (d) Top view of the stacking order in
the monoclinic C2/m phase for the three layers. For simplicity, only the Ru atoms are represented as blue, red, and green spheres, from the
top to the bottom layer.
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Hamiltonian.58 These observations contrast with the 6-fold
periodicity recently reported for bulk α-RuCl3,59,60 but they
match the 2-fold symmetry of the in-plane susceptibility
observed by Lampen−Kelley et al.61 in other bulk samples. The
latter demonstrated that this effect is consistent with a
monoclinic C2/m crystal structure (Figure 2d), where the a
(b) axis corresponds to the direction of the minimum
(maximum) susceptibility. Accordingly, in our samples, we
ascribe the direction of lower (higher) magnetoconductance to
the a (b) axis of the α-RuCl3 flake. We note that the extrema of
δG(θ) in the ab plane often coincide with the orientation of
one of the crystal edges62 of the α-RuCl3 flakes (e.g., see the
inset of Figure 1b), suggesting that the TAMR is indeed linked
to the symmetry of the magnetocrystalline anisotropy. Finally,
we point out that similar out-of-plane and in-plane TAMR
effects are observed in thicker flakes (see Supporting
Information, Figure S4).

Magnetic Phase Diagram. In addition to identifying the
magnetocrystalline axes of our α-RuCl3 flakes, magneto-
conductance measurements allow us to probe their magnetic
phase boundaries. We do so by measuring the conductance G
as a function of temperature T and the magnetic field B applied
along their a and b axes. Figure 3a shows G as a function of B
at selected values of T for B||b. At low temperatures, G exhibits
a nearly quadratic field dependence which becomes almost
linear when B > Bc ≃ 9−10 T. Beyond this critical field, G does

not appear to entirely saturate, even up to 14 T. This transition
is made more visible by taking the derivative of G with respect
to B as shown in Figure 3b. We see that the peak
corresponding to the transition shifts toward the lower field
and decreases as temperature increases. To further investigate
this transition, we consider the temperature dependence of G
at selected values of B (Figure 2c) and its derivative dG/dT
(Figure 3d). At low field (B < Bc), a small peak is observed in
dG/dT at a Neél temperature TN ∼ 14 K, which shifts to lower
temperatures as B increases. In contrast, at a high field (B >
Bc), a dip appears in dG/dT that moves to higher temperatures
with increasing B.
These results can be represented more effectively by plotting

the color map of dG/dT as a function of T and B, as illustrated
in Figure 3e. This map is strongly reminiscent of a typical
magnetic field-temperature phase diagram. We see that the
phase boundary coincides well with the position of the peak
extracted from the dG/dB and dG/dT curves (open blue
circles and squares, respectively). This phase boundary can be
fitted using the power law TN(B) = TN(0)(1 − B/Bc)νz, where
the exponent νz ≃ 0.16, Bc ≃ 9.4 T and the zero-field Neél
temperature TN(0) ≃ 14 K. We also performed similar
measurements and analysis with B||a, as shown in Figure 3f. In
this case, the phase boundary is best described by the power
law parameters νz ≃ 0.33 and Bc ≃ 10.7 T. We note that a

Figure 3. Magnetic phase diagram of trilayer α-RuCl3. (a) Conductance G and its derivative dG/dB (b) as a function of magnetic field B at
selected temperatures T between 1.8 and 24.6 K. (c) Conductance G and its derivative dG/dT (d) as a function of T at selected values of B
between 0 and 14 T. The arrows in (b) and (d) indicate the position and evolution of peaks in the derivative. (e, f) Color plot of dG/dT as a
function of T and B, with B pointing along the b and a axes of the crystal, respectively. Three phases are identified: zigzag antiferromagnetic
(ZZ-AFM), paramagnetic (PM) and partially polarized quantum disordered state (QDS). The blue circles and squares correspond to the
positions of the peaks in dG/dB and dG/dT, respectively. The black lines are fits to those data points, as described in the main text. All
measurements in this figure are performed with Vapp = 0.4 V. (g) Top view of the crystal and ZZ-AFM spin structure of a α-RuCl3 monolayer.
According to ref 63, spins (red and blue arrows) lie in the ac plan. Ru and Cl atoms are represented by gray and green spheres, respectively.
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similar phase boundary is observed in thicker α-RuCl3 flakes
(see Supporting Information, Figure S5).

DISCUSSION
The origin of this phase boundary can be readily interpreted by
comparing it to the one observed in bulk α-RuCl3.9,15,16,59,60
Like in the bulk case, we ascribe the magnetic ground state of
our exfoliated flake to a zigzag AFM order (Figure 3g). Indeed,
at low field, G exhibits a small drop as T decreases below TN,
which is most visible in thicker flakes (see the Supporting
Information, Figure S5). Such kinks are typically observed in
MTJs with AFM interlayer order and attributed to a spin filter
effect.39,42,45,48 This suggests that the ground state of α-RuCl3
flakes presents both intra- and interlayer AFM order, in
agreement with observations in the bulk.9,13,63 At the
intermediate field, bulk crystals have been found to undergo
a field-induced phase transition from this magnetically ordered
state to a partially polarized quantum-disordered state
(QDS).9,16,19,64 While the exact nature of this state is still
under debate, it is typically characterized by a gapped spin-
excitation continuum64,65 and quantum fluctuations that
prevent complete spin alignment. As a result, magnetic
saturation can be approached only asymptotically with
increasing B. This provides an explanation for the steadily
increasing G(B) we observe at high field (Figure 3a), which
contrasts with the magnetoconductance plateaus typically
observed in other layered transition metal trihalides.38,39 In
this high-field regime, the decrease of G with increasing
temperature (Figure 3c) can be interpreted as a reduction of
the spin polarization due to enhanced thermal fluctuations,
ultimately resulting in a paramagnetic (PM) state. The
minimum in dG/dT (Figure 3d) appears to demarcate the
crossover between the PM and the gapped QDS states.
Next, we discuss the effect of the in-plane magnetic field

orientation on the magnetic phase boundary. As can be seen by
comparing Figure 3e,f, Bc is slightly higher for B||a
(perpendicular to the Ru−Ru bonds) than for B||b (parallel
to the Ru−Ru bonds). This is consistent with our observation
that δGb > δGa, which suggests that the magnetic susceptibility

is higher for B||b. In contrast, in many bulk samples, Bc exhibits
a 6-fold rotational symmetry and is maximum when the field is
parallel to the Ru−Ru bonds.59,60 However, Mi et al. have
found that this can be sample-dependent, having observed a
maximum Bc perpendicular to the Ru−Ru bonds for one of
their bulk samples.66 It is worth noting that several of these
bulk samples exhibit one or several ordered phases below Bc.
Some of our magnetoconductance measurements also indicate
the presence of an intermediate phase when B||a. It is most
visible in devices with thicker flakes, in particular, N = 7 layers
(see Supporting Information, Figure S5i). This phase might
have the same origin as the narrow ZZ260 or X59,66 phase
observed in bulk samples (also most prominent for fields
perpendicular to the Ru−Ru bonds), in which the magnetic
structure adopts a 6-layer stacking, instead of the 3-layer
stacking at lower fields.58−60,62

In general, we note that the values of TN and Bc we measure
are larger than those typically reported for high-quality bulk
samples12,16,20,59,60 (TN ∼ 7 K, Bc ∼ 6 to 8 T), but similar to
those observed in samples with a high density of stacking
faults9,10,57,63,66 (TN ∼ 14 K, Bc ∼ 8 to 10 T). This enhanced
TN has been linked to the two-layer stacking periodicity
(ABAB) present in samples in powder form9,13 or those that
have been mechanically deformed.63 Indeed, owing to the
weak van der Waals forces between individual layers, polytypes
of α-RuCl3 have very small structural energy differences (<1
meV),67 making this material prone to stacking disorder. To
determine the layer stacking order in our flakes, we performed
high-angle annular dark field scanning transmission electron
microscopy (HAADF-STEM) on a ∼16 nm-thick exfoliated
flake at room temperature (see Supporting Information,
Section II). While we predominantly observe STEM images
consistent with the C2/m space group, we also observe several
alternative structures that are not well-described by the C2/m
structure or other known stacking orders of α-RuCl3. Instead,
we posit that these regions contain disordered stacking and
stacking faults as observed in other exfoliated 2D materials,
such as MoTe2

68 and TaS2.
69 These stacking faults may

originate from extrinsic effects such as the strain applied on the
flakes during their mechanical exfoliation or from intrinsic

Figure 4. Electronic structure and origin of the magnetoconductance in α-RuCl3. (a) DFT calculations of the band structure of trilayer α-
RuCl3 with C2/m stacking with zigzag AFM (black lines) or spin polarized (PS, blue lines) magnetic order. The energy barrier height ϕ0
between the bottom of the α-RuCl3 upper band and the Fermi energy EF is indicated. (b, c) Energy band diagrams of graphite/α-RuCl3/
graphite tunnel junctions (b) at zero field and (c) under an in-plane magnetic field B. ϕ↑,↓ represents the energy barrier height experienced
by majority- and minority-spin electrons. 2Δϕ = ϕ↓ − ϕ↑ is the total spin splitting energy between the two bands. The width of the arrows
represents the magnitude of the tunneling current. (d) Magnetoconductance δG as a function of voltage V across a α-RuCl3 flake with N = 7
layers at 1.8 K and selected values of B. The black lines are fits to the data using a spin-dependent FN tunneling model. Each fit yields a
single fitting parameter, Δϕ. e Left y axis: Δϕ/ϕ0 as a function of B (blue dots), where Δϕ is obtained from the fits in (d) and ϕ0 = 0.26 eV.
Right y axis: Magnetization M as a function of in-plane magnetic field B measured on a single crystal of α-RuCl3 with monoclinic C2/m
structure (orange line, taken from ref 9.).
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confinement effects on the stacking-dependent free energy.68

The in-plane stacking domain size is <1 μm, and given that the
area of our MTJ is typically on the order of 20 μm2, we infer
that they most certainly contain several stacking configurations.
The presence of stacking faults can have an important effect

on the low-temperature crystal structure. Bulk α-RuCl3
typically is believed to undergo a crystallographic phase
transition around 150 K from a monoclinic C2/m structure at
room temperature to a rhombohedral R3̅ structure at low
temperature.57,66,70,71 However, the 2-fold rotational symmetry
of our angle-dependent magnetoconductance measurements
(Figure 2b) indicates that the structure of our flakes remains in
the C2/m phase at low temperatures. Additionally, our
temperature-dependent transport measurements (Figure 1b,
for example) show no sign of a structural transition, which
should manifest as a jump in G(T). A plausible explanation is
that the stacking disorder effectively quenches the structural
transition by pinning the crystal in the monoclinic phase.
Similar effects have been observed in small α-RuCl3 samples63

and other thin exfoliated flakes.48,68,72 For α-RuCl3, variation
in the stacking structures can affect not only the interlayer
coupling but also several of the intralayer interactions such as
the Kitaev and Γ interactions.67 Hence, the larger values of TN
and Bc that we observe likely stem from the frozen-in
monoclinic phase of our exfoliated flakes.
Finally, we use this knowledge to gain insight into the

microscopic mechanism governing magnetoconductance in our
MTJs. For that purpose, we carried out density function theory
(DFT) calculations of the band structure of trilayer α-RuCl3
with a C2/m stacking order (see Methods for calculations
details). Initial calculations were performed with graphene
layers on both sides of α-RuCl3, but they failed to capture the
insulating behavior of α-RuCl3 found in our experiment (see
Supporting Information, Section III). Since we are interested
in understanding the effect of the external field on the α-RuCl3
bands, we computed the band structures of α-RuCl3 without
graphene in the zigzag AFM and spin-polarized (SP) magnetic
configurations (Figure 4a). In this case, we find that the Fermi
energy (EF) lies in the gap. The upper bands are composed of
Jeff = 1/2 while the lower bands are a combination of Jeff = 1/2
and 3/2. However, since the precise location of EF cannot be
determined numerically, we impose that it match the
experimentally obtained value of ϕ0, i.e. the energy difference
between the bottom of the Jeff = 1/2 bands and EF at zero field.
In the zero-field AFM configuration, the α-RuCl3 bands are
quite flat and lack aclear spin splitting, so electron tunneling is
expected to be spin-independent (Figure 4b). In the SP phase,
the conduction band is completely spin-polarized, and
majority-spin electrons experience a significantly reduced
energy barrier. The relative energy shift of the potential barrier
(Δϕ/ϕ0) varies with the momentum, ranging from 15%
around the X point to 65% at the Γ point. This magnetically
dependent lowering of the energy barrier leads to an
exponential increase of the tunneling current, thus explaining,
at least qualitatively, the large magnetoconductance that we
observe.
We can quantitively compare our experimental results to

these DFT calculations by analyzing our measurements with a
simple spin-dependent FN tunneling model.40,46,50 In this
phenomenological model, tunneling electrons with spin up and
down experience tilted energy barriers with different heights
ϕ↑,↓ (Figure 4c, see Supporting Information, Section IV). We
assume, as done by Wang et al.,40 that the field-induced spin

splitting Δϕ of the conduction band is symmetrical around the
zero-field barrier height, i.e., ϕ↑,↓ = ϕ0 ± Δϕ(B). Figure 4d
shows that this simple model captures well the decrease of the
magnetoconductance at large bias for different values of B.
From each curve, we extract a single fitting parameter, Δϕ(B),
which we normalized by ϕ0 in Figure 4e. The maximum
relative change extracted at B = 14 T is on the order of 20%,
which is comparable to our DFT predictions. Interestingly, the
spin splitting energy Δϕ(B) follows closely the magnetization
curve M(B) measured in bulk α-RuCl3 with a monoclinic
structure.9 This suggests, as previously reported for CrBr3,

40

that the spin-splitting energy is linearly proportional to the
magnetization, which elucidates the relation between the
tunneling magnetoconductance of α-RuCl3 and its magnet-
ization.

CONCLUSIONS
In summary, our study of α-RuCl3 demonstrates that angle-
dependent TMR measurements can provide a multitude of
information on the magnetic, electronic, and crystal properties
of ultrathin frustrated magnets. We find that they exhibit a
strong easy-plane magnetic anisotropy with a 2-fold in-plane
symmetry, indicating that their structure remains in the
monoclinic phase at low temperatures. As a result, exfoliated
flakes present a zigzag AFM magnetic ground state with
enhanced critical values (TN, Bc) compared with bulk α-RuCl3
with rhombohedral stacking. These results demonstrate the
influence of stacking order on the magnetic properties of van
der Waals materials. This sets the stage for generating exotic
magnetic phases, such as QSLs, by controlling the layer
stacking via, for instance, hydrostatic pressure73,74 or twist-
ing.75 As such, our work can potentially facilitate the
development of spintronic devices exploiting emergent
excitations in these unconventional phases.

METHODS
Crystal Synthesis. Single-crystal RuCl3 was synthesized from α-

RuCl3 powder provided by Furuya Metals (Japan). The powder was
sealed in a quartz ampule that had been purged with argon and then
placed under vacuum. The ampoule was heated to 1060 °C at 1.6 °C/
min. It was held at 1060 °C for 12 h before being slowly cooled to 600
°C at 6 °C/h. Crystals grew via chemical vapor transport as shiny
black plates. These were characterized via X-ray diffraction and
magnetic susceptibility to determine the phase purity and sample
quality. A single peak in the susceptibility was observed around 7 K.
This peak, along with the absence of an additional peak around 14 K,
has been shown to indicate low stacking fault density.63

Device Fabrication and Transport Measurements. α-RuCl3
flakes were mechanically exfoliated from the bulk crystal. Tunnel
junctions of hBN/graphite/α-RuCl3/graphite were assembled using a
dry pick-up technique using stamps of PDMS/PC. We note that the
relative angle between the crystalline axes of the flakes is not
controlled. Some of the heterostructures were fabricated inside a
glovebox filled with N2, others in air. No difference was observed in
the quality of the junction, which indicates that α-RuCl3 is air-stable.
The heterostructures were deposited onto a silicon substrate with a
285 nm oxide layer, and prepatterned Ti/Au allowed for contact with
the graphite electrodes. Transport measurements were performed in a
cryostat from Quantum Design (Dynacool Physical Properties
Measurement System) equipped with a sample rotator. We used a
combination of a DC voltage source (Yokogawa GS200), multimeter
(Agilent 34410A), and current preamplifier (Ithaco 1211) to measure
the conductance of the junction, as well as the graphite flakes. To
ensure an accurate measurement of the tunnel junction and avoid the
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contribution from its graphite contacts, we verified that the junction
resistance was always much greater than that of the graphite flakes.

DFT Calculations. The density functional theory (DFT)
calculations are performed with Vienna ab initio Simulation Packages
(VASP)76 with the projector augmented wave potential77 and the
Perdew−Burke−Ernzerhof (PBE)78 exchange-correlation functionals.
Three layers of α-RuCl3 with a C2/m type stacking type (rectangular
unit cell) are considered. A vacuum layer of 15 Å is included to avoid
interactions between images due to the periodic boundary conditions.
The energy cutoff for the plane-wave basis is 400 eV and the k-point
mesh is 6 × 3 × 1. Both the spin−orbit coupling (SOC) effect and the
onsite effective Coulomb interactions U = 1.5 eV are included.79 For
the zigzag AFM calculations, the magnetic structure has intralayer
AFM zigzag chains and is AFM between layers. The magnetic
moments are in the ac plane with a small c-axis component. For spin-
polarized (SP) calculations, the magnetic moments are along the a-
axis.
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