Maxime Charlebois & Simon Verret Using Mammouth

Using Mammouth
Maxime Charlebois & Simon Verret
Sherbrooke
September 2017

Abstract

This is intended to help someone who wants to connect to the supercomputer mammouth. It shows
how to put jobs in the execution queue, how to follow the progression for those jobs and how to compile
and run simple programs.

Contents

1 Linux command line 1
1.1 Connect to Mammouth e 2
1.2 Moving files e e e 2

2 Launch jobs on Mammouth 2
2.1 Job submissions L e e e 3
2.2 Follow your jobs e e e 4
2.3 Submit a lot of calculations 4
2.4 Monitor the available nodes 4

3 Compile on mammouth 4
3.1 Your first code L 5
3.2 The bin directory L 5
3.3 Themodule command e 5
3.4 Plotting some results using gnuplot L L Lo 6

1 Linux command line

Before reading this, one should be familiar with Linux terminal (Bash language, same as Mac terminal or
Unix terminal). The reader is expected to know the basic commands before reading this document. Here is
a list of the most important commands that one should know before reading this document:

$ 1s # list the file in the current directory
$ cd # change directory

$ pwd # show the current directory

$ mkdir # make a new directory

$ cp # copy files or directories

$ mv # move files or directories

$ rm # remove (delete) files or directories

$ sudo # do a command in superuser

$ cat # show the content of a file

$ man # show the manual of a command

$ grep # find a text or pattern in one or multiple file

In this document, we use “$” sign to indicate the terminal prompt and the “#” indicates a comment in the
bash language. If you need help to get familiar with Linux (Unix), I suggest the first 6 tutorials of this
website: http://www.ee.surrey.ac.uk/Teaching/Unix/index.html.

Another essential element is to learn how to edit a text file with a terminal text editor like nano (basic and
simple) or vi (complicated and powerful). This will become important when you need to edit a file remotely

http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

Maxime Charlebois & Simon Verret Using Mammouth

(on another computer, like mammouth) from your terminal. With the basic setup, these editors won’t allow
for mouse inputs. You must rely on multiple keyboard shortcuts to edit your file correctly. For the present
tutorial, the reader only need to know how to open, edit and save a file.

Another important tip is the copy-paste in command-line, hence if nano and vi. On a PC keyboard, the
Ctrl-c and Ctrl-v probably won’t work. You must then use Ctrl-shift-c and Ctrl-shift-v if that is the case.
This is useful if, for example, you want to copy the text from this “.pdf” file to the terminal. On Mac, the
shortcuts Cmd-c and Cmd-v should remain the same.

1.1 Connect to Mammouth

Once you are familiar with Linux, you can connect to mammouth, the super calculator at Sherbrooke Uni-
versity. Of course, you will need to get a username and a password with the help of your supervisor. Let’s
suppose here that your supervisor is Andre-Marie Tremblay and that the username you got is charlebl .
Now go into a terminal and type:

local$ ssh -X charlebl@tremblay-ms.ccs.usherbrooke.ca

Then enter your password, and that’s it, you are connected! The name local is the name of the terminal
that run on your (local) computer. A different name will be used when we are logged on a remote computer
like mammouth. Notice that you are connected to the MS, standing for Mammouth Serie. There is also MP
(Mammouth Parallel), a different cluster with more computing cores, to which you can connect by replacing
tremblay-ms by tremblay-mp2 in the command.

1.2 Moving files

Here are some commands that can be useful to move files between your computer and mammouth. You must
run them on a local terminal and not on a terminal logged onto mammouth. Indeed, you need to specify
an internet address or a ip. Since you most likely don’t know the ip address of your computer, it is always
better to use these command on a local terminal.

To copy from mammouth to your computer:

local$ scp -r charlebl@tremblay-ms.ccs.usherbrooke.ca:”/path/file ./file

and from your computer to mammouth

local$ scp -r ./file charlebl@tremblay-ms.ccs.usherbrooke.ca:~/path/file

the “r ” (recursively) is to copy folders (like with the cp command). Your password will be asked like for
ssh.

2 Launch jobs on Mammouth

Most of the information in this section were taken from: http://wiki.calculquebec.ca/w/Running_jobs#
tab=tab8. Omnce you are logged into mammouth, you can already execute some commands and codes. But,

http://wiki.calculquebec.ca/w/Running_jobs#tab=tab8
http://wiki.calculquebec.ca/w/Running_jobs#tab=tab8

Maxime Charlebois & Simon Verret Using Mammouth

you are on the interactive node, shared with other users of the department (you can check who with the
command who and even write to them with the command write). Since the node is interactive, you can run
your code, interact with it and debug, but it should not be used for more than that. If you want to launch a
code and wait for the result, you need to do a job submission. A rule of thumb is: if code that runs for more
than 20 minutes or requires more than half of the node’s processors (cores), it should be launched with a job
submission.

2.1 Job submissions

There are two ways to submit jobs on mammouth, here I present the basic way with the command gsub. There
is also a fancier and more powerful way, with the bgsubmit command (see section 2.3). When submitting
jobs, one first need to ask for the necessary amount of cores and memory. This is done with a system called
Torque (identified by acronym PBS) which manage the priority of your jobs, given a set of mysterious rules.
The idea is to write a file containing the commands to execute as a script, preceded by a PBS header. Let’s
name this file sub.pbs. Here, I want to execute echo "hello world" using 2 cores on mammouth (somewhat
overkill) and record the terminal output in a file name ecran_out (otherwise lost):

Submission file sub.pbs:

#!/bin/bash

#PBS -N nameToTrackYourJob

#PBS -q qworkGms

#PBS -1 nodes=1:ppn=2,walltime=00:05:00
cd $PBS_O_WORKDIR

echo "hello world" >> output.dat

The first line is the usual bash script header. The second line, the first PBS line, determines the name of the
job, because keeping good track of the jobs you submit is a really good habit to take. The second PBS line
determine the queue in which you want to submit your job. Apart from qwork@ms (allows max 120h), there is
also qtest@ms (max ~10h) and qlong@ms (max 1000h). If you want to launch job on MP, the most common
queue is qwork@mp2. It is important to stress that you must be logged on MS when you gsub a “pbs” file
with qwork@ms and on MP when you gsub a “pbs” file with qwork@mp2. The third PBS line specifies the
requirements of one job. For example, here we ask for 1 node, 2 cores (ppn for “processor per node”), and
an expected maximum time of 00:05 hours (5 minutes). The idea behind this is that our allowed total time
per core is counted and determines our priorities in the queues. We don’t want to use too much.

The last part is the executed script. The command cd $PBS_O_WORKDIR set the “current directory” at
the directory from where the submission was called (with the environment variable $PBS_0_WORKDIR) when
running the script. This is necessary if you want the output files your script to end there.

Finally, one can submit this once and for all:

ms$ gqsub sub.pbs

The job gets a number which will be displayed and then is waiting in the queue.

On MS, there are 8 cores per node and 16 Go of memory. A single node is always reserved to a single user.
A good habit is therefore to fill a node completely as often as possible, so that you don’t waste the unused
core time. So, one should send 8 jobs with node=1 and ppn=1 at a time, or 4 with ppn=2, or any other
combination that gives 8. For memory greedy programs, it can be advised to ask for more cores even if the
program uses only one of them. That way you won’t have memory conflicts.

Maxime Charlebois & Simon Verret Using Mammouth

2.2 Follow your jobs

Once the job is submitted, one can check its status with the gstat command. A plain gstat will yield a list
of all the users. To get your specific jobs, use (-u for users):

ms$ gstat -nu charlebil

ms.m:

Req’d Req’d Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
177107 .ms.m charlebl qwork nameToTrack 4059 1 2 == 00:05:00 R 00:00:02

cs302/0+cs302/1

The status of the job will be marked as Q if it is waiting in the queue and as R if running. Once the job
is running you can see on which node it is, given that you added the -n option, for “node”. Here, gstat
shows that the nodes cs302 is used, with processors 0 and 1 . While the code is running, you can visit this
particular node with the command ssh. Once on the node, you can, for example, check the CPU usage and
the memory allocated with the command top:

ms$ ssh cs302
cs302$ top

Finally, if something is wrong, use qdel with the number of the job, to kill it:

ms$ qdel 177107 .ms.m

2.3 Submit a lot of calculations

MP and MS offer another tool to submit a lot of jobs at the same time: BqTools. This offer the possibility to
launch the same code with different parameters and correctly allocate every job and create every corresponding
directory. This is the ideal way to scan multiple parameters, but requires a little more efforts. For now, we
recommend the reader to consult http://wiki.calculquebec.ca/w/BqTools/en

2.4 Monitor the available nodes

One very useful command to see how many nodes are busy on the cluster is:

ms$ bgmon

Which will show you each available queue and the number of requests made on that queue.

3 Compile on mammouth

When you develop a code, you cannot compile it on your personal computer and copy the binary file on
mammouth. It will most probably won’t work, and if it works, it will most probably not be optimal. You
must then learn to compile your code directly on the version of mammouth you want to run your code (MS
or MP).

http://wiki.calculquebec.ca/w/BqTools/en

Maxime Charlebois & Simon Verret Using Mammouth

3.1 Your first code

A very basic source code can be obtained at the adresse:
www.physique.usherbrooke.ca/quantique-udes/afmconductivities.tar.gz. You can move it on mam-
mouth (with scp) and uncompress it with:

ns$ tar -xzf afmconductivities.tar.gz

You can go then in the newly created directory afmconductivities and view the information in the
README file. In this directory, the code should compile directly with the command:

ms$ make

This command will read the makefile and generate locally a executable binary file afmCond. To run this
code, you can type the command:

ms$./afmCond

This will read the model.dat file present in the directory and compute various physical quantities (check the
README for more information about the physics). With the present model.dat file, this should run under
one minute.

3.2 The bin directory

The memory space on mammouth is expensive. It is a good practice to avoid to copy-pasting your executables
in every directory you want to use them. A good practice is to use the bin directory.

In your home directory (the one you access by doing the cd alone, or cd ~), you should have a directory
named bin. If it is not there, create it with mkdir bin. This is the directory where you want to move (mv)
your binary files in order to have access to this command from anywhere on your computer. Avoid using
binary names that corresponds to already existing terminal command, otherwise it could make this command
(or your program) unreachable.

The bin directory is automatically added to the executable PATH on mammouth due to the lines

export PATH=$PATH:$HOME/bin

in "\ .bash_profile file. You can create your own bin directory by adding a similar line in your
~\.bash_profile file or 7\ .bashrec file.

3.3 The module command

In order to avoid that every user install the same library multiple times, some program on mammouth
compiled and shared for all users. These are called “modules” and can be managed with the module command.

Let’s download another source code that requires some modules at the adresse: www.physique.usherbrooke.
ca/quantique-udes/onebody.tar.gz and “untar” it using the same procedure. If you go into the directory

www.physique.usherbrooke.ca/quantique-udes/afmconductivities.tar.gz
www.physique.usherbrooke.ca/quantique-udes/onebody.tar.gz
www.physique.usherbrooke.ca/quantique-udes/onebody.tar.gz

Maxime Charlebois & Simon Verret Using Mammouth

of onebody and type make, you will most likely receive an error message. This is because this code requires
a more recent gcc compiler and some external libraries (Cuba and Lapack). On MS, the libraries you need
to load are obtained with the command:

ms$ module add gcc/6.4.0 cuba/4.0 intel64/12.1.3.293

and on MP the libraries are:

mp2$ module add gcc/6.1.0 cuba/4.0 intel64/13.1.3.192

With these modules loaded, you can compile (make) and run (oneBody_ms or oneBody_mp) the code.
Here are some more commands you can use to play with the modules:

ms$ module list list the modules loaded
ms$ module avail
ms$ module add mymodules

#

modules available on the current computer

#
ms$ module rm mymodules # remove a loaded module

#

#

you already know

ms$ module initadd mymodules add module to the default modules list
ms$ module initrm mymodules rm module to the default modules list

The last two lines are very important. Indeed, most of the time, you need modules not only for the compi-
lation, but also for the execution of the binary. If you try to logout from mammouth and come back, the
code you compiled won’t run anymore unless you used initadd with the correct modules. These commands
edit the file 7\ .modules (or ~\.modules_mp2 on MP). You can edit these files manually, but there is a good
risk that these two commands won’t work anymore. If that is the case, you can always delete them, and the
system will create fresh new .modules files.

3.4 Plotting some results using gnuplot

It can be useful to rapidly plot some results obtained. As long as the result are in text format, it should be
possible to plot using gnuplot. Both codes downloaded in this tutorial provide some plotting example in
their README

To get a pretty Fermi surface, you can go to the directory onebody and run these commands:

ms$./oneBody_ms mdc

ms$ module add gnuplot/4.5

ms$ gnuplot

gnuplot> plot ’mdc.dat’ matrix with image
gnuplot> q

The last line is to exit gnuplot. You can also plot a more traditional plot (x-y axis) with:
ms$./oneBody_ms 1

ms$ gnuplot
gnuplot> plot ’n.out’ u 1:2 w 1p

gnuplot is much more powerful and configurable. But this gives a good starting point to visualize your data
on mammouth.

	Linux command line
	Connect to Mammouth
	Moving files

	Launch jobs on Mammouth
	Job submissions
	Follow your jobs
	Submit a lot of calculations
	Monitor the available nodes

	Compile on mammouth
	Your first code
	The +bin+ directory
	The module command
	Plotting some results using gnuplot

