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Localized basis

Goal: transform ab-initio electronic structure into localized basis

Density Functional Theory
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Downfolded Hamiltonian

Dynamical Mean-Field Theory

∆(ω)

■ both conceptual and technical
advantages:

■ chemical intuition
■ connection to models
■ local physics, e.g. impurities,

defects, local interactions
■ dielectric polarization
■ Wannier interpolation
■ ...

■ how to do it in practice?

J. Kuneš, in Wannier Functions and Construction of Model Hamiltonians edited by E. Pavarini, E. Koch, D. Vollhardt, A. Liechtenstein
(Forschungszentrum, Jülich, 2017)
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From many-body to effective one-body problem
electronic Schrödinger equation:

ĤΨ(r1, · · · , rN) = ϵΨ(r1, ..., rN)

Ut

with

Ĥ = −
∑

i

ℏ2∇2
i

2m +
∑
i<j

e2

|ri − rj |
+

N∑
i

vext(ri) = T + U + Vext

in second quantization:

Ĥ =
∑

ij
tijc†

i cj +
∑
ijkl

Uijklc†
i c†

j clck

→ ĤDFT =
∑

ij
t̃ijc†

i cj
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Effective single-particle picture

Recast full system into a ficticious, auxiliary system of separable Kohn-Sham orbitals
{ψn}, that generates the same density as the original one

ĤKS ψn(r) =
[
− ℏ2

2m∇2 + veff(r)
]
ψn(r) = ϵnψn(r)

veff(r) = vH[ρ](r) + δEXC[ρ]
δρ(r) + vext(r)

■ solution is found self-consistently
■ exchange-correlation potential is the only unknown
■ Kohn-Sham orbitals have little physical meaning

→ ĤKS =
∑

ij
t̃ijc†

i cj
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The Bloch theorem

For electrons in a periodic potential the solutions to the Schrödinger equation are Bloch
functions:

ĤKS ψnk(r) = ϵnkψnk(r)
with

ψnk(r) = eik·runk(r) with unk(r) = unk(r + T̂i)

A few remarks:
■ [Ĥ, T̂i ] = 0, block diagonalization
■ discrete spectrum n ∈ Z

■ k ∈ BZ, continuous variable for the
infinite crystal

■ ψnk(r) orthonormal
■ gauge freedom ψnk(r) → eiϕ(k)ψnk(r)
■ ψnk(r) can be smooth function of k

F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik 52, 555 (1929)Â·
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From Bloch states to Wannier functions

■ Bloch functions at different k have
different envelope functions eik·r

ψnk(r) = eik·runk(r)

■ build localized basis by superposing
Bloch functions

■ requirements:
■ should span same subspace
■ should be orthonormal basis

N. Marzari et al., Rev. Mod. Phys. 84, 1419-1475 (2012)
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From Bloch states to Wannier functions

■ for one band n:

wn0(r) = V
(2π)3

∫
BZ

dkψnk(r)

■ for multiple Wannier functions:

wnR(r) = V
(2π)3

∫
BZ

dk e−ik·Rψnk(r)

with wnR(r) = ⟨r|Rn⟩ = wn0(r − R), or

|Rn⟩ = V
(2π)3

∫
BZ

dk e−ik·R|ψnk⟩

G. H. Wannier, Phys. Rev. 52, 191-197 (1937)
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Properties of Wannier functions

Properties of |Rn⟩:
■ they form an orthonormal set:

⟨Rn|R′m⟩ = δRR′δnm

■ {|Rn⟩} span the same space as {|ψnk⟩}:

P = V
(2π)3

∫
BZ

dk |ψnk⟩⟨ψnk| =
∑
R

|Rn⟩ ⟨Rn|

■ they are translational images of |0n⟩

G. H. Wannier, Phys. Rev. 52, 191-197 (1937)
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Localization of Wannier functions

Properties of |Rn⟩:
■ localized to some extent in real space

Fourier transform

|Rn⟩ = V
(2π)3

∫
BZ

dk e−ik·R|ψnk⟩

Fourier series (inverse Fourier transform)

|ψnk⟩ =
∑
R

eik·R |Rn⟩

■ smooth, periodic function has Fourier
coefficients that decay rapidly

■ “gauge freedom”: |ψW
nk⟩ = eiφn(k)|ψnk⟩

■ choose φn(k) so that |ψW
nk⟩ are smooth in k

https://mriquestions.com/fourier-transform-ft.html
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Wannier functions - multiple bands

■ “gauge freedom” for multiple bands:

|Rj⟩ = V
(2π)3

∫
BZ

dk e−ik·R|ψjk⟩

|ψW
jk ⟩ =

J∑
n

Uk,nj |ψnk⟩

■ no one-to-one correspondence band n ↔ orb. j
■ Wannier functions strongly nonunique!
■ Uk encode the gauge selection
■ how to choose the unitary rotations to get

localized WFs?

Example: SrVO3
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How to get Wannier functions in practice
Projection method:

■ start with localized trial orbitals gn(r):

|ϕnk⟩ =
J∑

m=1
Ak,mn|ψmk⟩ with Ak,mn = ⟨ψmk|gn⟩ (Wannier90)

■ construct Löwdin-orthonormalized Bloch-like states:

|ψ̃nk⟩ =
J∑

m=1
|ϕnk⟩ S−1/2

k,mn with Sk,mn = (A†A)k,mn

■ the |ψ̃nk⟩ are smooth in k, leading to well-localized Wannier functions
■ advantages: simple, they retain the symmetry of the trial orbitals
■ disadvantages: cases without good guesses, e.g. molecular orbitals, low-symmetry

N. Marzari et al., Rev. Mod. Phys. 84, 1419-1475 (2012)
sbeck@flatironinstitute.org 10



Maximally localized Wannier functions (MV method)
■ Marzari and Vanderbilt scheme: choose optimal Uk that minimize spread functional

Ω =
J∑

j=1

[
⟨ 0j | r2 | 0j ⟩ −

∣∣⟨ 0j | r | 0j ⟩
∣∣2 ]

■ iterative minimzation using steepest-descents or conjugate-gradient method
■ Blount identities provide matrix elements of position operator in Wannier basis:

⟨Ri |r|0j⟩ = i V
(2π)3

∫
dk eik·R⟨uik|∇k|ujk⟩

■ can be recast in terms of overlap matrices:

M(k,b)
ij = ⟨uik|ujk+b⟩ (Wannier90)

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
E.I. Blount, “Formalisms of band theory,” in Solid State Phys., Vol. 13 (Elsevier) p. 305. (1962)
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Disentanglement procedure (SMV scheme)
■ previous concepts extend to non-isolated (“entangled”) groups of bands

■ identify J-dim. Bloch manifold from a larger set
of Jk Bloch eigenstates (subspace selection):

∣∣∣ψ̃nk
〉

=
Jk∑

m=1
Ṽk,mn|ψmk⟩

■ where Ṽk,mn are Jk × J matrices, Ṽ †
k Ṽk = 1J×J

|Rj⟩ = V
(2π)3

∫
BZ

dk e−ik·R

Γ M X Γ Z A R Γ

−1

0

1

2

E
n

er
gy

(e
V

)

R

W

I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)
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Major applications of Wannier functions
■ Interpolation
■ Geometry and Topology
■ Advanced electronic-structure methods

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)
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Wannier interpolation and tight-binding models

■ {|Rn⟩} span the same space as {|ψnk⟩}

■ efficient interpolation in reciprocal
space important for BZ integrals

f̄n = 1
Nk

∑
k

fn(k) → 1
Ω

∫
BZ

dk fi(k)

■ reproduce correct band connectivity

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)
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Wannier interpolation
f (k) F (R) f (k′)

H(W)
ij (k) =

〈
u(W)

nk

∣∣∣∣ Ĥ(k)
∣∣∣∣u(W)

mk

〉
=

[
V †

k (k)H(k)Vk
]

nm

with

Hnm(k) = ϵnkδnm

H(W)
ij (R) = 1

N
∑

k
e−ik·RH(W)

ij (k)

H(W)
ij (k′) =

∑
R

eik′·RH(W)
ij (R)

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007)
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Automatic, high-order, adaptive Brillouin zone integration
Task: compute local single-particle Green’s function (i.e. DOS)

G(ω) =
∫

BZ
d3k Tr

[(
ω − H(k) − Σ(k, ω)

)−1]

■ Applications: e.g. self-consistency loops in DMFT and post-processing
■ Setting: H(k) obtained from a Wannier Hamiltonian H(R), Σ(k, ω) = iη
■ Goal: fully automatic, high-order and adaptive algorithm

J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, SciPost Phys. 15, 062 (2023)
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Adaptive Brillouin zone integration - DOS of SrVO3

■ density of states (DOS):

A(ω) = − 1
π

Im G(ω)

■ comparison of default (PTR) versus
new (IAI) algorithm

■ user-provided error tolerance eliminates
convergence tests

■ available in AutoBZ.jl package ω (eV)
10 11 12 13 14 15

S
V

O
 D

O
S

 (
eV

⁻¹
 Å
⁻³

)

0

10

20

PTR(), η=0.01

L. Van Muñoz, SB, and J.Kaye, in preparation (2024)
https://github.com/lxvm/AutoBZCore.jl/tree/main/aps_example
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Beyond DFT with localized orbitals

■ Idea: DFT description good for most
states, many-body (MB) treatment for
low-energy states

■ Approach: partition the total Hilbert
space efficiently using WFs

■ charge self-consistency important (for
some systems)

: see lecture by O. Parcollet

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)
sbeck@flatironinstitute.org 18



Low-energy subspace with Wannier functions

Degree of localization...
■ depends on energy window and contained states (hybridization)
■ affects difficulty of MB calculations, value/form of local interaction
■ Example: 3 t2g orbitals versus 5+9 dp orbitals in Sr2RuO4
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Wannier functions ecosystem

Ecosystem based on:
■ theoretical advancement

■ e.g. automation workflows, novel
localization algorithm, ...

■ development of open-source software packages
■ Wannier Software Ecosystem Registry∗

■ user support†

■ documentation, tutorials, mailing list,
schools, developers meeting, ...

∗
https://wannier-developers.github.io/wannier-ecosystem-registry/

†
https://wannier.org/support
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Wannier functions for the practitioner using Wannier90

Building Wannier functions:
■ ingredients from an electronic structure calculation:

■ overlap between Bloch states (wannier90.mmn): M(k,b)
ij = ⟨uik|ujk+b⟩

■ projection onto trial localized orbitals (wannier90.amn): A(k)
mn = ⟨ψmk|gn⟩

■ user-defined input (wannier90.win):
■ trial orbitals, disentanglement parameters, ...

Other quantities:
■ hoppings (input: wannier90.eig → output: wannier90_hr.dat)
■ additional ingredients based on quantity of interest...
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