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A.  Functions of Hermitian matrices 
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C.  Single-particle density matrix for one-body Hamiltonians 

D.  Wick’s theorem (for thermal density matrices) 

E.  Many-body reduced density matrices of thermal 

 density matrices for one-body Hamiltonians

Background notions in many-body theory



A) Functions of Hermitian matrices

H = H†
H = UEU†

f(H) = Uf(E)U†

Hvn = Envn

f(H)vn = f(En)vn



B) Representation of Fock states and Fermionic operators

|Γ⟩ = [c†
1 ]q1(Γ)…[c†

ν ]qν(Γ) |0⟩

Fermionic operators: {c†
α, cα | α = 1,..,ν}

Fock states:

Occupation numbers are encoded 
in binary-representation digits of :Γ

Γ ∈ {0,...,2ν − 1}
Γ = (q1(Γ), . . . , qν(Γ)) ̂nα |Γ⟩ = c†

αcα |Γ⟩ = qα(Γ) |Γ⟩

(Subscript combines unit-
cell label, orbital, spin…)



B) Representation of Fock states and Fermionic operators

|Γ⟩ = [c†
1 ]q1(Γ)…[c†

ν ]qν(Γ) |0⟩

Γ ∈ {0,...,2ν − 1}
Γ = (q1(Γ), . . . , qν(Γ))

Fock states:

Example for :  ν = 4
Γ = 5 = (0101)

|Γ⟩ = c†
3 c†

1 |0⟩

Fermionic operators: {c†
α, cα | α = 1,..,ν}



B) Representation of Fock states and Fermionic operators

|Γ⟩ = [c†
1 ]q1(Γ)…[c†

ν ]qν(Γ) |0⟩Fock states:

Matrix representation: 

[F†
α]ΓΓ′ 

= ⟨Γ |c†
α |Γ′ ⟩ = δqα(Γ),qα(Γ′ )+1∏

s≠α

δqs(Γ),qs(Γ′ ) (−1)∑α−1
s=1 qs(Γ)

Fermionic operators: {c†
α, cα | α = 1,..,ν}



B) Representation of Fock states and Fermionic operators

|Γ⟩ = [c†
1 ]q1(Γ)…[c†

ν ]qν(Γ) |0⟩Fock states:

Matrix representation: Example  ν = 2

F†
1 =

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

, F1 =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

F†
2 =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

, F2 =

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

Fermionic operators: {c†
α, cα | α = 1,..,ν}



C) Single-particle density matrix for one-body Hamiltonians

Trace over  is a sum over  statesℋ 2ν

Δαβ := ⟨c†
αcβ⟩T = Trℋ [ ̂ρT c†

αcβ] = [ fT(h)]βα

Ĥ =
ν

∑
α,β=1

hαβ c†
αcβ ̂ρT =

e− Ĥ
T

Trℋ [e− Ĥ
T ]



D) Wick’s theorem (for thermal density matrices)

Ĥ =
ν

∑
α,β=1

hαβ c†
αcβ ̂ρT =

e− Ĥ
T

Trℋ [e− Ĥ
T ]

Example I:

⟨Ψ0 |c†
αc†

βcγcδ |Ψ0⟩ = ⟨Ψ0 |c†
αcδ |Ψ0⟩⟨Ψ0 |c†

βcγ |Ψ0⟩ − ⟨Ψ0 |c†
αcγ |Ψ0⟩⟨Ψ0 |c†

βcδ |Ψ0⟩

⟨c†
αc†

βcγcδ⟩T = ⟨c†
αcδ⟩T⟨c†

βcγ⟩T − ⟨c†
αcγ⟩T⟨c†

βcδ⟩T



D) Wick’s theorem (for thermal density matrices)

Example II:

⟨c†
αc†

βcγcδ⟩T = ⟨c†
αcδ⟩T⟨c†

βcγ⟩T − ⟨c†
αcγ⟩T⟨c†

βcδ⟩T

Depends only on , not on T, α′ , β′ α, β

Type I: Disconnected

Type II: Connected

⟨X̂ c†
αcβ⟩T = ⟨X̂⟩T⟨c†

αcβ⟩T + ∑
α′ β′ 

ξT
α′ β′ 

⟨cα′ 

c†
α⟩T⟨c†

β′ 

cβ⟩T



E) Many-body reduced density matrices of thermal 
 density matrices for one-body Hamiltonians

̂ρT =
e− Ĥ

T

Trℋ [e− Ĥ
T ]

(α = 1,..,νi)

c†
iα Trace over  is a sum over 

 states
ℋ

2ν1 × 2ν2 × . . . × 2νN

⟨Ôi⟩T = Trℋ [ ̂ρT Ôi] =: Trℋi [ ̂P0
i Ôi] Trace over  is a sum 

over  states
ℋi

2νi

Ĥ = ∑
ij

νi

∑
α=1

νj

∑
β=1

hαβ
ij c†

iαcjβ



E) Many-body reduced density matrices of thermal 
 density matrices for one-body Hamiltonians

Ĥ = ∑
ij

νi

∑
α=1

νj

∑
β=1

hαβ
ij c†

iαcjβ

̂ρT ∝ exp −
∑ij ∑νi

α=1 ∑νj
β=1 hαβ

ij c†
iαcjβ

T

(α = 1,..,νi)

c†
iα

⟨Ôi⟩T = Trℋ [ ̂ρT Ôi] =: Trℋi [ ̂P0
i Ôi] ̂P0

i ∝ exp −
νi

∑
α,β=1

[ϕi]αβ c†
iαciβ

ϕi = ln ( 1 − ΔT
i

ΔT
i ) [Δi]αβ = ⟨c†

iαcjβ⟩T



E) Many-body reduced density matrices of thermal 
 density matrices for one-body Hamiltonians

Ĥ = ∑
ij

νi

∑
α=1

νj

∑
β=1

hαβ
ij c†

iαcjβ

̂ρT ∝ exp −
∑ij ∑νi

α=1 ∑νj
β=1 hαβ

ij c†
iαcjβ

T

(α = 1,..,νi)

c†
iα

⟨Ôi⟩T = Trℋ [ ̂ρT Ôi] =: Trℋi [ ̂P0
i Ôi] = Tr [P0

i Oi]

P0
i ∝ exp −

νi

∑
α,β=1

[ϕi]αβ F†
iαFiβ

[Oi]ΓΓ′ 
= ⟨Γ | Ôi |Γ′ ⟩
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The Hamiltonian: tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c

†
iα, ciα]

•      :                   Indices of the fragments of the lattice. 
•      :   Local operator on fragment  
•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c
†
iα, ciα] i

α, β
[tij]αβ

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] + ∑

i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



|ΨG⟩ = �̂�G |Ψ0⟩ =
𝒩

∏
i=1

�̂�i |Ψ0⟩

The gGA variational wave function:

Evaluating and minimizing 

 ⟨ΨG | Ĥ |ΨG⟩ = ⟨Ψ0 |�̂�†
GĤ�̂�G |Ψ0⟩



|ΨG⟩ = �̂�G |Ψ0⟩ =
𝒩

∏
i=1

�̂�i |Ψ0⟩

The gGA variational wave function:

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G



|ΨG⟩ = �̂�G |Ψ0⟩ =
𝒩

∏
i=1

�̂�i |Ψ0⟩

A few related concepts and methods

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G

Suggestive analogies: 

• Matrix product states and projected entangled pair states.
• Ancilla qubit techique (S. Sachdev)
• Hidden Fermion (M. Imada)
• Hidden Fermi liquid (P. Anderson)



Our goal is to minimize   
w.r.t.  

⟨Ψ0 |�̂�†
GĤ�̂�G |Ψ0⟩

{Λi}, |Ψ0⟩

�̂�i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λi]Γn |Γ, i⟩⟨n, i |

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G
|Γ, i⟩ = [c†

i1]
q1(Γ)…[c†

iνi
]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(n)…[ f †
iBνi

]qBνi(n) |0⟩

 controls the “size” of the auxiliary spaceB ≥ 1



Self-consistency

tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c

†
iα, ciα]Quantum-embedding 

formulation

Impurity i Bath i

c†
iα b†

ia

(α = 1,..,νi)

(a = νi+1,..,Bνi)

2νi × 2Bνi



|ΨG⟩ = �̂�G |Ψ0⟩ =
𝒩

∏
i=1

�̂�i |Ψ0⟩

Alternative derivations of gGA equations

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G

Final equations can be also obtained from 
RISB and DMET principles:
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|ΨG⟩ = �̂�G |Ψ0⟩ =
𝒩

∏
i=1

�̂�i |Ψ0⟩

�̂�i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λi]Γn |Γ, i⟩⟨n, i |

The gGA variational wave function:

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G
|Γ, i⟩ = [c†

i1]
q1(Γ)…[c†

iνi
]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(n)…[ f †
iBνi

]qBνi(n) |0⟩



2νi × 2Bνi

|ΨG⟩

|Ψ0⟩

Auxiliary 
space

Physical 
space

�̂�G

 can be treated only numerically in general|ΨG⟩

Our goal is to minimize   
w.r.t.  

⟨Ψ0 |�̂�†
GĤ�̂�G |Ψ0⟩

{Λi}, |Ψ0⟩

Wick’s theorem:   ⟨Ψ0 | f †
a f †

b fc fd |Ψ0⟩ = ⟨Ψ0 | f †
a fd |Ψ0⟩⟨Ψ0 | f †

b fc |Ψ0⟩ − ⟨Ψ0 | f †
a fc |Ψ0⟩⟨Ψ0 | f †

b fd |Ψ0⟩



1. Definition of approximations (GA and G. constraints).  

2. Evaluation of  in terms of . 

3. Definition of slave-boson (SB) amplitudes. 

4. Mapping from SB amplitudes to embedding states. 

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi}, |Ψ0⟩

Derivation steps:



Gutzwiller approximation:
We will exploit simplifications that become exact in the limit of -coordination 
lattices. In this sense, the gGA is a variational approximation to DMFT.

∞

Evaluating   ⟨ΨG | Ĥ |ΨG⟩ = ⟨Ψ0 |�̂�†
GĤ�̂�G |Ψ0⟩

Gutzwiller constraints:
⟨Ψ0 |�̂�†

i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

Wick’s theorem:   ⟨Ψ0 |c†
ac†

b cccd |Ψ0⟩ = ⟨Ψ0 |c†
acd |Ψ0⟩⟨Ψ0 |c†

b cc |Ψ0⟩ − ⟨Ψ0 |c†
acc |Ψ0⟩⟨Ψ0 |c†

b cd |Ψ0⟩



Gutzwiller constraints:
⟨Ψ0 |�̂�†

i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

Key consequence:
⟨Ψ0 |�̂�†

i �̂�i f †
ia fib |Ψ0⟩ = ⟨Ψ0 |�̂�†

i �̂�i |Ψ0⟩⟨Ψ0 | f †
ia fib |Ψ0⟩

+⟨Ψ0 |[�̂�†
i �̂�i ] f †

ia fib |Ψ0⟩2−legs

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

�̂�Gc†
iα

f †
ia



Gutzwiller constraints:

Key consequence:
⟨Ψ0 |�̂�†

i �̂�i f †
ia fib |Ψ0⟩ = ⟨Ψ0 |�̂�†

i �̂�i |Ψ0⟩⟨Ψ0 | f †
ia fib |Ψ0⟩

+⟨Ψ0 |[�̂�†
i �̂�i ] f †

ia fib |Ψ0⟩2−legs

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1 �̂�Gc†

iα

f †
ia



Gutzwiller constraints:

Key consequence:

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩

+⟨Ψ0 |[�̂�†
i �̂�i ] f †

ia fib |Ψ0⟩2−legs

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1 �̂�Gc†

iα

f †
ia



Gutzwiller constraints:

Key consequence:

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |[�̂�†
i �̂�i ] ⋯ |Ψ0⟩2−legs = 0 ∀ a, b

�̂�Gc†
iα

f †
ia



1. Definition of approximations (GA and G. constraints).  

2. Evaluation of  in terms of . 

3. Definition of slave-boson (SB) amplitudes. 

4. Mapping from SB amplitudes to embedding states. 

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi}, |Ψ0⟩

Derivation steps:



The Hamiltonian: tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c

†
iα, ciα]

•      :                   Indices of the fragments of the lattice. 
•      :   Local operator on fragment  
•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c
†
iα, ciα] i

α, β
[tij]αβ

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] + ∑

i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(

𝒩

∏
k=1

�̂�†
k) Ĥi

loc (
𝒩

∏
k=1

�̂�k) |Ψ0⟩

= ⟨Ψ0 | ∏
k≠i

�̂�†
k�̂�k (�̂�†

i Ĥ
i
loc�̂�i) |Ψ0⟩

Local operators:



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(

𝒩

∏
k=1

�̂�†
k) Ĥi

loc (
𝒩

∏
k=1

�̂�k) |Ψ0⟩

= ⟨Ψ0 | ∏
k≠i

�̂�†
k�̂�k (�̂�†

i Ĥ
i
loc�̂�i) |Ψ0⟩

= ⟨Ψ0 |(�̂�†
k�̂�k) ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

Local operators:



⟨Ψ0 |(�̂�†
k�̂�k) ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

= ⟨Ψ0 |(�̂�†
k�̂�k) |Ψ0⟩ × ⟨Ψ0 | ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

(G. constraints)

{= 1

Local operators: (disconnected terms)



= ⟨Ψ0 |(�̂�†
k�̂�k) |Ψ0⟩ × ⟨Ψ0 | ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

= ⟨Ψ0 | ∏
k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

Local operators: (disconnected terms)

⟨Ψ0 |(�̂�†
k�̂�k) ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩



Local operators: (connected terms 2 legs)

= 0

(G. constraints)

⟨Ψ0 |(�̂�†
k�̂�k) ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

⟨Ψ0 |[�̂�†
i �̂�i ] ⋯ |Ψ0⟩2−legs = 0 ∀ a, b



Local operators: (connected terms >2 legs)

= 0

(G. Approximation)

⟨Ψ0 |(�̂�†
k�̂�k) ∏

k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

( Exact in limit of  dimension )∞



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(�̂�†

k�̂�k) ∏
k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

≈ ⟨Ψ0 | ∏
k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

Local operators:

(GA and G. constraints)



⟨ΨG | Ĥi
loc |ΨG⟩ = ⟨Ψ0 |(�̂�†

k�̂�k) ∏
k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

≈ ⟨Ψ0 | ∏
k′ ≠i,k

�̂�†
k′ 

�̂�k′ (�̂�†
i Ĥ

i
loc�̂�i) |Ψ0⟩

Local operators:

≈ ⟨Ψ0 |�̂�†
i Ĥ

i
loc�̂�i |Ψ0⟩

(GA and G. constraints)



The Hamiltonian: tij

(α = 1,..,νi)

c†
iα

Ĥi
loc[c

†
iα, ciα]

•      :                   Indices of the fragments of the lattice. 
•      :   Local operator on fragment  
•      :                 Indices of Fermionic modes within each fragment. 
•     :               Matrix elements of the hopping term.

i, j
Ĥi

loc[c
†
iα, ciα] i

α, β
[tij]αβ

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] + ∑

i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



⟨ΨG |c†
iαcjβ |ΨG⟩ = ⟨Ψ0 |(

𝒩

∏
k=1

�̂�†
k) c†

iαcjβ (
𝒩

∏
k=1

�̂�k) |Ψ0⟩

= ⟨Ψ0 | ∏
k≠i,j

�̂�†
k�̂�k (�̂�†

i c
†
iα�̂�i) (�̂�†

j cjβ�̂�j) |Ψ0⟩

≈ ⟨Ψ0 |(�̂�†
i c

†
iα�̂�i) (�̂�†

j cjβ�̂�j) |Ψ0⟩(GA and G. constraints)

Non-Local 1-body operators, i.e., :i ≠ j



Non-Local 1-body operators, i.e., :i ≠ j

�̂�G

f †
ia

Constructed with 
 operators{fia, f†

ia}

Constructed with 
 operators{fja, f†

ja}

⟨ΨG |c†
iαcjβ |ΨG⟩ ≈ ⟨Ψ0 |(�̂�†

i c
†
iα�̂�i) (�̂�†

j cjβ�̂�j) |Ψ0⟩

c†
iα



⟨ΨG |c†
iαcjβ |ΨG⟩ ≈ ⟨Ψ0 |(�̂�†

i c
†
iα�̂�i) (�̂�†

j cjβ�̂�j) |Ψ0⟩

⟨Ψ0 |�̂�†
i c

†
iα�̂�i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα⟨Ψ0 | f †
ib fia |Ψ0⟩

Where  is determined by:ℛi

=
Bνi

∑
a=1

Bνj

∑
b=1

⟨Ψ0 |([ℛi]aα f†
ia) ([ℛj]†

βb fjb) |Ψ0⟩

�̂�G

c†
iα

f †
ia

Non-Local 1-body operators, i.e., :i ≠ j



Variational energy:

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

⟨Ψ0 |�̂�†
i Ĥi

loc[c
†
iα, ciα] �̂�i |Ψ0⟩

⟨Ψ0 |�̂�†
i c

†
iα�̂�i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα⟨Ψ0 | f †
ib fia |Ψ0⟩Where:

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] +

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ

{



1. Definition of approximations (GA and G. constraints).  

2. Evaluation of  in terms of . 

3. Definition of slave-boson (SB) amplitudes. 

4. Mapping from SB amplitudes to embedding states. 

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi}, |Ψ0⟩

Derivation steps:

(Connection with RISB)



Variational energy:

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

⟨Ψ0 |�̂�†
i Ĥi

loc[c
†
iα, ciα] �̂�i |Ψ0⟩

⟨Ψ0 |�̂�†
i c

†
iα�̂�i fia |Ψ0⟩ =

Bνi

∑
b=1

[ℛi]bα ⟨Ψ0 | f †
ib fia |Ψ0⟩Where:

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}{



Where:

[Fiα]ΓΓ′ 
= ⟨Γ, i |ciα |Γ′ , i⟩

[F̃ia]nn′ 
= ⟨n, i | fia |n′ , i⟩

�̂�i =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[Λi]Γn |Γ, i⟩⟨n, i |

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iνi

]qνi(Γ) |0⟩

|n, i⟩ = [ f †
i1]

q1(n)…[ f †
iBνi

]qBνi(n) |0⟩

P0
i ∝ exp −

Bνi

∑
a,b=1 [ln ( 1 − ΔT

i

ΔT
i )]

ab

F̃†
iaF̃ib

⟨Ψ0 |�̂�†
i c

†
iα�̂�i fia |Ψ0⟩ = Tr[P0

i Λ†
i F

†
iαΛi F̃ia] =

Bνi

∑
b=1

[ℛi]bα [Δi]ba

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = Tr[P0

i Λ†
i Λi ] = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = Tr [P0
i Λ†

i ΛiF̃†
iaF̃ib] = ⟨Ψ0 | f †

ia fib |Ψ0⟩ =: [Δi]ab

⟨Ψ0 |�̂�†
i Ĥi

loc[c
†
iα, ciα] �̂�i |Ψ0⟩ = Tr[P0

i Λ†
i Ĥ

i
loc[F†

iα, Fiα]Λi ]



P0
i ∝ exp −

Bνi

∑
a,b=1 [ln ( 1 − ΔT

i

ΔT
i )]

ab

F̃†
iaF̃ib

Matrix of SB amplitudes:

ϕi = Λi P0
i

⟨Ψ0 |�̂�†
i c

†
iα�̂�i fia |Ψ0⟩ = Tr[P0

i Λ†
i F

†
iαΛi F̃ia] =

Bνi

∑
b=1

[ℛi]bα [Δi]ba

⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = Tr[P0

i Λ†
i Λi ] = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = Tr [P0
i Λ†

i ΛiF̃†
iaF̃ib] = ⟨Ψ0 | f †

ia fib |Ψ0⟩ =: [Δi]ab

⟨Ψ0 |�̂�†
i Ĥi

loc[c
†
iα, ciα] �̂�i |Ψ0⟩ = Tr[P0

i Λ†
i Ĥ

i
loc[F†

iα, Fiα]Λi ]



⟨Ψ0 |�̂�†
i �̂�i |Ψ0⟩ = Tr [ϕ†

i ϕi] = 1

⟨Ψ0 |�̂�†
i �̂�i f †

ia fib |Ψ0⟩ = Tr [ϕ†
i ϕiF̃†

iaF̃ib] = ⟨Ψ0 | f †
ia fib |Ψ0⟩ =: [Δi]ab

Tr [ϕ†
i F†

iαϕiF̃ia] =
Bνi

∑
c=1

[ℛi]cα [Δi(1 − Δi)]
1
2
ca

⟨Ψ0 |�̂�†
i Ĥi

loc[c
†
iα, ciα] �̂�i |Ψ0⟩ = Tr [ϕiϕ†

i Ĥi
loc[F

†
iα, Fiα]]

[Fiα]ΓΓ′ 
= ⟨Γ, i |ciα |Γ′ , i⟩

[F̃ia]nn′ 
= ⟨n, i | fia |n′ , i⟩

Matrix of SB amplitudes:

ϕi = Λi P0
i



Variational energy:

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

Tr [ϕiϕ†
i Ĥi

loc[F
†
iα, Fiα]]

Tr [ϕ†
i F†

iαϕiF̃ia] =
Bνi

∑
c=1

[ℛi]cα [Δi(1 − Δi)]
1
2
caWhere:

Tr [ϕ†
i ϕi] = 1

Tr [ϕ†
i ϕiF̃†

iaF̃ib] = ⟨Ψ0 | f †
ia fib |Ψ0⟩ ∀ a, b ∈ {1,..,Bνi}

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] + ∑

i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ

{



1. Definition of approximations (GA and G. constraints).  

2. Evaluation of  in terms of . 

3. Definition of slave-boson (SB) amplitudes. 

4. Mapping from SB amplitudes to embedding states. 

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi}, |Ψ0⟩

Derivation steps:

(Connection with QE theories and DMET)



2νi × 2Bνi

[ϕi]Γn ⟶ |Φi⟩ =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

[ϕi]Γn |Γ; i⟩ ⊗ |n; i⟩

Quantum-embedding formulation

2νi × 2Bνi

Impurity Bath 

c†
iα b†

ia

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iνi

]qνi(Γ) |0⟩

|n, i⟩ = [b†
i1]

q1(n)…[b†
iBνi

]qBνi(n) |0⟩

A useful trick: interpret the variational 

parameters  as 

coefficients parametrizing an AIM state

ϕi = Λi P0
i



2νi × 2Bνi

[ϕi]Γn ⟶ |Φi⟩ =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

e
iπ
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

Quantum-embedding formulation

2νi × 2Bνi
N(n) =

Bνi

∑
a=1

qa(n)

Impurity Bath 

c†
iα b†

ia

[
νi

∑
α=1

c†
αcα +

Bνi

∑
a=1

b†
aba] |Φi⟩ =

B + 1
2

νi |Φi⟩

If  eigenstate of number operator: |ΨG⟩

|Γ, i⟩ = [c†
i1]

q1(Γ)…[c†
iνi

]qνi(Γ) |0⟩

|n, i⟩ = [b†
i1]

q1(n)…[b†
iBνi

]qBνi(n) |0⟩



Tr[ϕ†
i ϕi F†

iaFib] = ⟨Φi |bibb
†
ia |Φi⟩ = [Δi]ab

Tr[ϕ†
i F†

iαϕi Fia] = ⟨Φi |c†
iαbia |Φi⟩

Tr[ϕi ϕ†
i Ĥi

loc[F
†
iα, Fiα]] = ⟨Φi | Ĥi

loc[c
†
iα, ciα] |Φi⟩

Quantum-embedding formulation

[ϕi]Γn ⟶ |Φi⟩ =
2νi−1

∑
Γ=0

2Bνi−1

∑
n=0

e
iπ
2 N(n)(N(n)−1)[ϕi]Γn |Γ; i⟩ ⊗ UPH |n; i⟩

2νi × 2Bνi

Impurity Bath 

c†
iα b†

ia

2νi × 2Bνi



Where:

⟨Φi |Φi⟩ = ⟨Ψ0 |Ψ0⟩ = 1

⟨Φi |b†
ibbia |Φi⟩ = ⟨Ψ0 | f †

ia fib |Ψ0⟩ = [Δi]ab , ∀a, b = 1,…, Bνi

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

⟨Φi | Ĥi
loc[c

†
iα, ciα] |Φi⟩

⟨Φi |c†
iαbia |Φi⟩ =

Bνi

∑
a=1

[ℛi]aα[Δi(1 − Δi)]
1
2
ab

Variational energy:

Ĥ =
𝒩

∑
i=1

Ĥi
loc[c

†
iα, ciα] + ∑

i≠j

νi

∑
α=1

νj

∑
β=1

[tij]αβ c†
iαcjβ



1. Definition of approximations (GA and G. constraints).  

2. Evaluation of  in terms of . 

3. Definition of slave-boson (SB) amplitudes. 

4. Mapping from SB amplitudes to embedding states. 

5. Lagrange formulation of the optimization problem.

⟨ΨG | Ĥ |ΨG⟩ {Λi}, |Ψ0⟩

Derivation steps:



Variational energy:

⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 | f †
ia fib |Ψ0⟩ =: [Δi]ab

⟨Φi |bibb
†
ia |Φi⟩ = [Δi]ab

⟨Φi |Φi⟩ = 1

Where:

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

⟨Φi | Ĥi
loc[c

†
iα, ciα] |Φi⟩

⟨Φi |c†
iαbia |Φi⟩ =

Bνi

∑
a=1

[ℛi]aα[Δi(1 − Δi)]
1
2
ab



Ec
i

E

[λi]ab
[λc

i ]ab

[𝒟i]aα

Variational energy:

⟨Ψ0 |Ψ0⟩ = 1

⟨Ψ0 | f †
ia fib |Ψ0⟩ =: [Δi]ab

⟨Φi |bibb
†
ia |Φi⟩ = [Δi]ab

⟨Φi |Φi⟩ = 1

Where: ⟨Φi |c†
iαbia |Φi⟩ =

Bνi

∑
a=1

[ℛi]aα[Δi(1 − Δi)]
1
2
ab

ℰ =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

⟨Ψ0 | f †
ia fjb |Ψ0⟩ +

𝒩

∑
i=1

⟨Φi | Ĥi
loc[c

†
iα, ciα] |Φi⟩



Lagrange function:

ℒ = ⟨Ψ0 | Ĥqp[ℛ, λ] |Ψ0⟩ + E (1 − ⟨Ψ0 |Ψ0⟩)
+

𝒩

∑
i=1

[⟨Φi | Ĥemb
i [𝒟i, λc

i ] |Φi⟩ + Ec
i (1 − ⟨Φi |Φi⟩)]

−
𝒩

∑
i=1

Bνi

∑
a,b=1

([λi]ab
+ [λc

i ]ab) [Δi]ab
+

Bνi

∑
c,a=1

νi

∑
α=1

([𝒟i]aα [ℛi]cα [Δi(1 − Δi)]
1
2

ca
+ c.c.)

Ĥqp[ℛ, Λ] =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

f †
ia fjb +

𝒩

∑
i=1

Bνi

∑
a,b=1

[λi]ab
f †
ia fib

Impurity Bath 

c†
iα b†

ia

Ĥi
emb[𝒟i, Λc

i ] = Ĥi
loc [ciα, c†

iα] +
Bνi

∑
a=1

νi

∑
α=1

([𝒟i]aα
c†

iαbia + H.c.) +
Bνi

∑
a,b=1

[λc
i ]ab

bibb†
ia



[Πi f (ℛtℛ† + λ) Πi]ba
= [Δi]ab

Bνi

∑
c,b=1

νi

∑
α=1

∂
∂ [d0

i ]s
[Δi (1 − Δi)]

1
2

cb
[𝒟i]bα [ℛi]cα

+ c . c . + [li + lc
i ]s = 0

⟨Φi |bibb
†
ia |Φi⟩ − [Δi]ab

= 0

Δi =
(Bνi)2

∑
s=1

[d0
i ]s [hT

i ]s

λi =
(Bνi)2

∑
s=1

[li]s [hi]s

λc
i =

(Bνi)2

∑
s=1

[lc
i ]s [hi]s

{

Lagrange equations:
Self-

consistency

c†
iα b†

ia𝒟i

Λc
i

Ĥi
emb[𝒟i, λc

i ] |Φi⟩ = Ec
i |Φi⟩ ⟶ |Φi⟩

[Πitℛ†f (ℛtℛ† + λ) Πi]αa
=

Bνi

∑
c=1

[𝒟i]cα [Δi (1 − Δi)]
1
2

ac

⟨Φi |c†
iαbia |Φi⟩ −

Bνi

∑
c=1

[Δi (1 − Δi)]
1
2

ca
[ℛi]cα

= 0
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ℛ
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Δ

𝒟
4 ℛ

Δ
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𝒟
5 Δ

λc

Lagrange equations:

[Πi f (ℛtℛ† + λ) Πi]ba
= [Δi]ab

Bνi

∑
c,b=1

νi

∑
α=1

∂
∂ [d0

i ]s
[Δi (1 − Δi)]

1
2

cb
[𝒟i]bα [ℛi]cα

+ c . c . + [li + lc
i ]s = 0

⟨Φi |bibb
†
ia |Φi⟩ − [Δi]ab

= 0

Ĥi
emb[𝒟i, λc

i ] |Φi⟩ = Ec
i |Φi⟩ ⟶ |Φi⟩

[Πitℛ†f (ℛtℛ† + λ) Πi]αa
=

Bνi

∑
c=1

[𝒟i]cα [Δi (1 − Δi)]
1
2

ac

⟨Φi |c†
iαbia |Φi⟩ −

Bνi

∑
c=1

[Δi (1 − Δi)]
1
2

ca
[ℛi]cα

= 0



Lagrange equations:
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Lagrange equations:
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Self-consistency

c†
iα b†

ia

Λc
i(α = 1,..,νi)

(a = 1,..,Bνi)

2νi × 2Bνi

[Λi]Γn → [ϕi]Γn → |Φi⟩

⟨ΨG | Ĥ |ΨG⟩ = ⟨Ψ0 |�̂�†
GĤ�̂�G |Ψ0⟩

 
(DMFT)
d → ∞ (gRISB) Quantum 

Embedding 
(gDMET)

Summary: Connection between different 
theoretical frameworks (gGA, DMFT, RISB, DMET)

gGA 
(variational)



A.  Background notions in many-body theory (board) 

B.  The GA/gGA wave function: Introduction 

C.  Derivation gGA method: QE formulation 

D.  Applications, recent developments and open problems 

   Supplementary topics:  
   - Spectral properties 
   - Time-dependent extension 
   - DFT+gGA

Outline



Applications, recent developments 
and open problems

1. Single-band Hubbard model  

2. Single-band Anderson Lattice model 

3. Three-band Hubbard model 

4. Real materials: DFT+gGA (NiO) 

5. Extensions and future applications



1-Band Hubbard model:EMERGENT BLOCH EXCITATIONS IN MOTT MATTER PHYSICAL REVIEW B 96, 195126 (2017)

FIG. 2. Evolution of (top) total energy, (middle) local double
occupancy, and (bottom) QP weight as a function of the Hubbard
interaction strength U for the single-band Hubbard model with
semicircular DOS at half-filling. The ghost-GA results are shown
in comparison with the ordinary GA and with DMFT+NRG. The
ghost-GA boundaries of the coexistence region Uc1,Uc2 are indicated
by vertical dotted lines. Inset: Integral of ghost-GA local spectral
weight over all frequencies (see discussion in main text).

in comparison with the ordinary GA theory and with DMFT
in combination with numerical renormalization group (NRG).
In particular, we employed the “NRG Ljubljana” impurity
solver [26].

The agreement between ghost-GA and DMFT is quantita-
tively remarkable. In particular, the ghost-GA theory enables
us to account for the coexistence region of the Mott and
metallic phases, which is not captured by the ordinary GA
theory. The values of the boundaries of the coexistence region
Uc1 ≃ 2, Uc2 ≃ 2.88 are in good agreement with the DMFT
results available in the literature [27–30], i.e., Uc1 ≃ 2.39,
Uc2 ≃ 2.94. The ghost-GA value of Uc2, which is the actual
Mott transition point at T = 0, is particularly accurate. The
method also gives a reasonable value for the very small energy
scale characterizing the coexistence region, which we can
estimate as Tc ≃ Eins(Uc1) − Emet(Uc1) ≃ 0.02, consistently
with both DMFT and experiments [31,32]. We point out also
that, as shown in the second panel of Fig. 2, the ghost-
GA approach captures the charge fluctuations in the Mott
phase, while this is approximated by the simple atomic limit
(which has zero double occupancy) within the Brinkman-Rice
scenario [33].

Interestingly, while at least two ghost orbitals are necessary
to obtain the data illustrated above for the metallic solution, one
ghost orbital is sufficient to obtain our results concerning the

FIG. 3. Poles of the ghost-GA energy-resolved Green’s function
(bullets), see Eq. (6), in comparison with DMFT+NRG. The size of
the bullets indicates the spectral weights of the corresponding poles.
Metallic solution for U = 1, 2.5 and Mott solution for U = 3.5, 5.

Mott phase. Increasing further the number of ghost orbitals
does not lead to any appreciable difference [11]. As we are
going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.

Let us now analyze the ghost-GA single-particle Green’s
function G(ϵ,ω), see Eq. (6). In Fig. 3 is shown the ghost-GA
energy-resolved spectral function A(ϵ,ω) = − 1

π
ImG(ϵ,ω) in

comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
convenient to express the QP Hamiltonian [Eq. (5)] in a gauge
where λ̃ is diagonal [35].

In the metallic phase, an explicit ghost-GA calculation
obtained employing two ghost orbitals shows that the matrices
R̃ and λ̃ are represented as follows:

λ̃ij = l δij (δ2i − δ3i) (7)

R̃ij = δj1(
√

z δi1 +
√

h (δi2 + δi3)/
√

2), (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref. [19]. The
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FIG. 2. Evolution of (top) total energy, (middle) local double
occupancy, and (bottom) QP weight as a function of the Hubbard
interaction strength U for the single-band Hubbard model with
semicircular DOS at half-filling. The ghost-GA results are shown
in comparison with the ordinary GA and with DMFT+NRG. The
ghost-GA boundaries of the coexistence region Uc1,Uc2 are indicated
by vertical dotted lines. Inset: Integral of ghost-GA local spectral
weight over all frequencies (see discussion in main text).

in comparison with the ordinary GA theory and with DMFT
in combination with numerical renormalization group (NRG).
In particular, we employed the “NRG Ljubljana” impurity
solver [26].

The agreement between ghost-GA and DMFT is quantita-
tively remarkable. In particular, the ghost-GA theory enables
us to account for the coexistence region of the Mott and
metallic phases, which is not captured by the ordinary GA
theory. The values of the boundaries of the coexistence region
Uc1 ≃ 2, Uc2 ≃ 2.88 are in good agreement with the DMFT
results available in the literature [27–30], i.e., Uc1 ≃ 2.39,
Uc2 ≃ 2.94. The ghost-GA value of Uc2, which is the actual
Mott transition point at T = 0, is particularly accurate. The
method also gives a reasonable value for the very small energy
scale characterizing the coexistence region, which we can
estimate as Tc ≃ Eins(Uc1) − Emet(Uc1) ≃ 0.02, consistently
with both DMFT and experiments [31,32]. We point out also
that, as shown in the second panel of Fig. 2, the ghost-
GA approach captures the charge fluctuations in the Mott
phase, while this is approximated by the simple atomic limit
(which has zero double occupancy) within the Brinkman-Rice
scenario [33].

Interestingly, while at least two ghost orbitals are necessary
to obtain the data illustrated above for the metallic solution, one
ghost orbital is sufficient to obtain our results concerning the

FIG. 3. Poles of the ghost-GA energy-resolved Green’s function
(bullets), see Eq. (6), in comparison with DMFT+NRG. The size of
the bullets indicates the spectral weights of the corresponding poles.
Metallic solution for U = 1, 2.5 and Mott solution for U = 3.5, 5.

Mott phase. Increasing further the number of ghost orbitals
does not lead to any appreciable difference [11]. As we are
going to show, this is connected with the fact that the electronic
structures of the Mott and the metallic phases are topologically
distinct.

Let us now analyze the ghost-GA single-particle Green’s
function G(ϵ,ω), see Eq. (6). In Fig. 3 is shown the ghost-GA
energy-resolved spectral function A(ϵ,ω) = − 1

π
ImG(ϵ,ω) in

comparison with DMFT [34]. Although the broadening of the
bands (scattering rate), is not captured by our approximation
(as it is not captured by the ordinary GA), the positions
and the weights of the poles of the ghost-GA spectral
function encode most of the DMFT features, not only at low
energies (QP excitations), but also at high energies (Hubbard
bands). In order to analyze how the spectral properties of the
system emerge within the ghost-GA theory, it is particularly
convenient to express the QP Hamiltonian [Eq. (5)] in a gauge
where λ̃ is diagonal [35].

In the metallic phase, an explicit ghost-GA calculation
obtained employing two ghost orbitals shows that the matrices
R̃ and λ̃ are represented as follows:

λ̃ij = l δij (δ2i − δ3i) (7)

R̃ij = δj1(
√

z δi1 +
√

h (δi2 + δi3)/
√

2), (8)

where δij is the Kronecker delta, and l, z and h are real
positive numbers determined numerically as in Ref. [19]. The
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Impurity i Bath i

Self-consistency

2νi × 2Bνi

1-Band Hubbard model:



1-Band Hubbard model:

Nb = 1 Nb = 3
Nb = 5 Nb = 7

Variational: Energy decreases 
as we increase Nb



1-Band Hubbard model:

Nb = 1 Nb = 3

Nb = 5 Nb = 7



1-Band Anderson Lattice Model

Nb = 3

Ghost extension necessary to capture 
interplay between Mott physics and 
hybridization between correlated and 
itinerant degrees of freedom 



3-Band Hubbard model:

Nb = 1 × 3 = 3

Nb = 3 × 3 = 9
Nb = 3 × 5 = 15



3-Band Hubbard model:

Nb = 1 × 3 = 3

Nb = 3 × 3 = 9
Nb = 3 × 5 = 15

Total energy



Benchmark calculations NiO (DFT+gGA):

Impurity i Bath i

Self-consistency

• - DFT+gGA written by Tsung-Han 
Lee, built on ComRISB DFT+GA 
code by Yongxin Yao et. al


• - DFT+DMFT (CTQMC) generated 
using Kristjan Haule’s code https://
www.physics.rutgers.edu/~haule/

https://www.physics.rutgers.edu/~haule/
https://www.physics.rutgers.edu/~haule/
https://www.physics.rutgers.edu/~haule/
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Key features of gGA:
1.  Less computationally demanding than DMFT 

2.  Practically as accurate as DMFT for ground- 
   state properties (with “ghost” extension) 

3.  Variational (T=0) 

3.  Flexible (e.g., possible extension to non- 
   equilibrium dynamics)



Implementations
1.  ComRISB (only GA for now):  

https://www.bnl.gov/comscope/software/downloads.php  
For further inquiries, contact Yongxin Yao at ykent@iastate.edu. 

2.  Portobello (GA/gGA): 
Computer Physics Communications 294, 108907 (2024), ISSN 0010- 4655 

3.  Pedagogical gGA code for 1-band Hubbard Model: 
https://gitlab.com/collaborations3/g-ga-hubbard 
For further inquiries, contact Marius Frank at marius.frank@chem.au.dk.


4.  Implementation within TRIQS under development

https://gitlab.com/collaborations3/g-ga-hubbard


Potential extensions and Perspectives
1.  Efficient impurity solvers for ground state: 

- Matrix Product States 
- Variational Quantum Eigensolvers 
- Neural Network States 
- Machine Learning  

2.  Extensions based on RISB/DMET perspectives:  
- Gaussian fluctuations, non-local interactions … 

3.  Applications: Structure prediction, Catalysis, Quantum 
dynamics (td-gGA) …



A.  Background notions in many-body theory (board) 

B.  The GA/gGA wave function: Introduction 

C.  Derivation gGA method: QE formulation 

D.  Applications, recent developments and open problems 

   Supplementary topics:  
   - Spectral properties 
   - Time-dependent extension 
   - DFT+gGA

Outline
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Supplemental topic 1: 
Spectral properties



Spectral properties
ℒ = ⟨Ψ0 | Ĥqp[ℛ, λ] |Ψ0⟩ + E (1 − ⟨Ψ0 |Ψ0⟩)
+

𝒩

∑
i=1

[⟨Φi | Ĥemb
i [𝒟i, λc

i ] |Φi⟩ + Ec
i (1 − ⟨Φi |Φi⟩)]

−
𝒩

∑
i=1

Bνi

∑
a,b=1

([λi]ab
+ [λc

i ]ab) [Δi]ab
+

Bνi

∑
c,a=1

νi

∑
α=1

([𝒟i]aα [ℛi]cα [Δi(1 − Δi)]
1
2

ca
+ c.c.)

Ĥqp[ℛ, Λ] =
𝒩

∑
i,j=1

Bνi

∑
a,b=1

[ℛitijℛ†
j ]ab

f †
ia fjb +

𝒩

∑
i=1

Bνi

∑
a,b=1

[λi]ab
f †
ia fib

Ĥi
emb[𝒟i, Λc

i ] = Ĥi
loc [ciα, c†

iα] +
Bνi

∑
a=1

νi

∑
α=1

([𝒟i]aα
c†

iαbia + H.c.) +
Bνi

∑
a,b=1

[λc
i ]ab

bibb†
ia

Iteratively calculated ground state  
of  , but its excited states  
also correspond to a saddle point !

|Ψ0⟩
Ĥqp ξ†

n |Ψ0⟩



|ΨG⟩ = 𝒫 |Ψ0⟩

|Ψn
G⟩ = 𝒫 ξ†

n |Ψ0⟩

Spectral properties

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩

Ground state:

Excited states: �̂�Gc†
iα

f †
ia



𝒢(ω) = ∫
∞

−∞
dϵ

A(ϵ)
ω − ϵ

≃ ℛ† 1
ω − [ℛtℛ† + λ]

ℛ =:
1

ω − tloc − Σ(ω)

Spectral properties

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩

Ground state: |ΨG⟩ = 𝒫 |Ψ0⟩

|Ψn
G⟩ = 𝒫 ξ†

n |Ψ0⟩Excited states: �̂�Gc†
iα

f †
ia



[Σi(ω)]αβ = [ai]αβ + ∑
n

[bin]αβ

ω + i0+ − pn

Spectral properties
Ground state:

Aiα,jβ(ω) = ⟨ΨG |ciα δ(ω − Ĥ) c†
jβ |ΨG⟩ + ⟨ΨG |c†

jβ δ(ω + Ĥ) ciα |ΨG⟩

|ΨG⟩ = 𝒫 |Ψ0⟩

|Ψn
G⟩ = 𝒫 ξ†

n |Ψ0⟩Excited states: �̂�Gc†
iα

f †
ia



Supplemental topic 2: 
Time-dependent gGA



Our goal is to extremize w.r.t. : {Λi}, |Ψ0⟩

S = ∫
tf

ti

dt ⟨ΨG(t) | i∂t − Ĥ |ΨG(t)⟩

Time-dependent gGA







Supplemental topic 3: 
DFT+gGA



DFT+gGA



DFT+gGA


