Wave functions, slave particles and quantum embedding methods for correlated systems

The multi-orbital <u>gGA</u> theory as a **Quantum Embedding framework**

Nicola Lanatà nxlsps@rit.edu nlanata@flatironinstitute.org

Lecture notes:

https://www.cond-mat.de/events/correl23/manuscripts/lanata.pdf

Computational for Quantum Materials

May 19 to 31, 2024

Rochester Institute of Technology

Outline

- A. Background notions in many-body theory (board)
- **B.** The GA/gGA wave function: Introduction
- **C.** Derivation gGA method: QE formulation
- - **Supplementary topics:**
 - Spectral properties
 - Time-dependent extension
 - DFT+gGA

Lecture notes:

https://www.cond-mat.de/events/correl23/manuscripts/lanata.pdf

D. Applications, recent developments and open problems

Background notions in many-body theory

- A. Functions of Hermitian matrices
- **B.** Fock states and representation of Fermionic operators
- C. Single-particle density matrix for one-body Hamiltonians
- D. Wick's theorem (for thermal density matrices)
- E. Many-body reduced density matrices of thermal
 - density matrices for one-body Hamiltonians

A) Functions of Hermitian matrices

$H = UEU^{\dagger}$

 $f(H)v_n = f(E_n)v_n$

 $Hv_n = E_n v_n$

Fermionic operators: $\{c_{\alpha}^{\dagger}, c_{\alpha} \mid \alpha = 1, ..., \nu\}$

$\Gamma \in \{0, ..., 2^{\nu} - 1\}$ $\Gamma = (q_1(\Gamma), \ldots, q_\nu(\Gamma))$

(Subscript combines unitcell label, orbital, spin...)

Fock states: $|\Gamma\rangle = [c_1^{\dagger}]^{q_1(\Gamma)} \dots [c_{\nu}^{\dagger}]^{q_{\nu}(\Gamma)} |0\rangle$

Occupation numbers are encoded in binary-representation digits of Γ : $\hat{n}_{\alpha} | \Gamma \rangle = c_{\alpha}^{\dagger} c_{\alpha} | \Gamma \rangle = q_{\alpha}(\Gamma) | \Gamma \rangle$

Fermionic operators: $\{c_{\alpha}^{\dagger}, c_{\alpha} \mid \alpha = 1, ..., \nu\}$

$\Gamma \in \{0, ..., 2^{\nu} - 1\}$ $\Gamma = (q_1(\Gamma), \dots, q_\nu(\Gamma))$

Fock states: $|\Gamma\rangle = [c_1^{\dagger}]^{q_1(\Gamma)} \dots [c_{\nu}^{\dagger}]^{q_{\nu}(\Gamma)} |0\rangle$

Example for $\nu = 4$: $\Gamma = 5 = (0101)$ $|\Gamma\rangle = c_3^{\dagger}c_1^{\dagger}|0\rangle$

Fermionic operators: $\{c_{\alpha}^{\dagger}, c_{\alpha} \mid \alpha = 1, ..., \nu\}$

Matrix representation:

Fock states: $|\Gamma\rangle = [c_1^{\dagger}]^{q_1(\Gamma)} \dots [c_{\nu}^{\dagger}]^{q_{\nu}(\Gamma)} |0\rangle$

 $[F_{\alpha}^{\dagger}]_{\Gamma\Gamma'} = \langle \Gamma | c_{\alpha}^{\dagger} | \Gamma' \rangle = \delta_{q_{\alpha}(\Gamma), q_{\alpha}(\Gamma')+1} \prod \delta_{q_{s}(\Gamma), q_{s}(\Gamma')} (-1)^{\sum_{s=1}^{\alpha-1} q_{s}(\Gamma)}$ $s \neq \alpha$

Fermionic operators: $\{c_{\alpha}^{\dagger}, c_{\alpha} \mid \alpha = 1, ..., \nu\}$

Matrix representation: Example $\nu = 2$

 $F_{1}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, F_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, F_{2}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}, F_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Fock states: $|\Gamma\rangle = [c_1^{\dagger}]^{q_1(\Gamma)} \dots [c_{\nu}^{\dagger}]^{q_{\nu}(\Gamma)} |0\rangle$

C) Single-particle density matrix for one-body Hamiltonians

 $\hat{H} = \sum h_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta}$ $\alpha,\beta=1$

Trace over \mathcal{H} is a sum over 2^{ν} states

 $\Delta_{\alpha\beta} := \langle c^{\dagger}_{\alpha} c_{\beta} \rangle_{T} = \mathrm{Tr}_{\mathcal{X}}$

$$\hat{\rho}_{T} = \frac{e^{-\frac{\hat{H}}{T}}}{\operatorname{Tr}_{\mathscr{H}}\left[e^{-\frac{\hat{H}}{T}}\right]}$$

$$\mathscr{H}\left[\hat{\rho}_T c_{\alpha}^{\dagger} c_{\beta}\right] = [f_T(h)]_{\beta\alpha}$$

D) Wick's theorem (for thermal density matrices)

 $\hat{H} = \sum_{\alpha,\beta=1}^{\nu} h_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta} \qquad \hat{\rho}_{T} = \frac{e^{-\frac{H}{T}}}{\mathsf{Tr}_{\mathscr{H}} \left[e^{-\frac{\hat{H}}{T}} \right]}$

 $\langle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} \rangle_{T} = \langle c_{\alpha}^{\dagger} c_{\delta} \rangle_{T} \langle c_{\beta}^{\dagger} c_{\gamma} \rangle_{T} - \langle c_{\alpha}^{\dagger} c_{\gamma} \rangle_{T} \langle c_{\beta}^{\dagger} c_{\delta} \rangle_{T}$

 $\langle \Psi_{0} | c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} | \Psi_{0} \rangle = \langle \Psi_{0} | c_{\alpha}^{\dagger} c_{\delta} | \Psi_{0} \rangle \langle \Psi_{0} | c_{\beta}^{\dagger} c_{\gamma} | \Psi_{0} \rangle - \langle \Psi_{0} | c_{\alpha}^{\dagger} c_{\gamma} | \Psi_{0} \rangle \langle \Psi_{0} | c_{\beta}^{\dagger} c_{\delta} | \Psi_{0} \rangle$

Example I:

D) Wick's theorem (for thermal density matrices)

 $\langle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} \rangle_{T} = \langle c_{\alpha}^{\dagger} c_{\delta} \rangle_{T} \langle c_{\beta}^{\dagger} c_{\gamma} \rangle_{T} - \langle c_{\alpha}^{\dagger} c_{\gamma} \rangle_{T} \langle c_{\beta}^{\dagger} c_{\delta} \rangle_{T}$

Type I: Disconnected

$\langle \hat{X} c_{\alpha}^{\dagger} c_{\beta} \rangle_{T} = \langle \hat{X} \rangle_{T} \langle c_{\alpha}^{\dagger} c_{\beta} \rangle_{T} + \sum_{I \in \mathcal{I}} \xi_{\alpha'\beta'}^{T} \langle c_{\alpha'} c_{\alpha}^{\dagger} \rangle_{T} \langle c_{\beta'}^{\dagger} c_{\beta} \rangle_{T}$ Type II: Connected

Depends only on T, α', β', not on α, β

E) Many-body reduced density matrices of thermal density matrices for one-body Hamiltonians

$\hat{H} = \sum_{ij} \sum_{\alpha=1}^{\nu_i} \sum_{\beta=1}^{\nu_j} h_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$

••• $(\alpha = 1, ..., \nu_i)$

$\langle \hat{O}_i \rangle_T = \operatorname{Tr}_{\mathscr{H}} \left[\hat{\rho}_T \, \hat{O}_i \right] =: \operatorname{Tr}_{\mathscr{H}_i} \left[\hat{P}_i^0 \, \hat{O}_i \right] \longleftarrow$

 $\int_{i} \left[\hat{P}_{i}^{0} \hat{O}_{i} \right] \longleftarrow \frac{\text{Trace over } \mathscr{H}_{i} \text{ is a sum}}{\text{over } 2^{\nu_{i}} \text{ states}}$

E) Many-body reduced density matrices of thermal density matrices for one-body Hamiltonians

 $\hat{\rho}_T \propto \exp\left(-\frac{\sum_{ij} \sum_{\alpha=1}^{\nu_i} \sum_{\beta=1}^{\nu_j} h_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}}{T}\right)$

••• $\hat{H} = \sum_{ij} \sum_{\alpha=1}^{i} \sum_{\beta=1}^{j} h_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$

 $\langle \hat{O}_i \rangle_T = \operatorname{Tr}_{\mathscr{H}} \left[\hat{\rho}_T \hat{O}_i \right] =: \operatorname{Tr}_{\mathscr{H}_i} \left[\hat{P}_i^0 \, \hat{O}_i \right] \longrightarrow \hat{P}_i^0 \propto \exp \left[-\sum_{\alpha,\beta=1}^{\nu_i} \left[\phi_i \right]_{\alpha\beta} c_{i\alpha}^{\dagger} c_{i\beta} \right]$

 $\phi_{i} = \ln\left(\frac{1 - \Delta_{i}^{T}}{\Delta_{i}^{T}}\right) \quad [\Delta_{i}]_{\alpha\beta} = \langle c_{i\alpha}^{\dagger} c_{j\beta} \rangle_{T}$

E) Many-body reduced density matrices of thermal density matrices for one-body Hamiltonians

•••
$$(\alpha = 1, .., \nu_i)$$

$$\langle \hat{O}_i \rangle_T = \operatorname{Tr}_{\mathscr{H}} \left[\hat{\rho}_T \, \hat{O}_i \right] =: \operatorname{Tr}_{\mathscr{H}_i} \left[\hat{P}_i^0 \, \hat{O}_i \right]$$

 $\sum_{ij} \sum_{\alpha=1}^{\nu_i} \sum_{\beta=1}^{\nu_j} h_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$ $\hat{\rho}_T \propto \exp$

••• $\hat{H} = \sum \sum_{i=1}^{\nu_i} \sum_{j=1}^{\nu_j} h_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$ ij $\alpha = 1 \beta = 1$

 $P_i^0 \propto \exp\left(-\sum_{\alpha,\beta=1}^{\nu_i} [\phi_i]_{\alpha\beta} F_{i\alpha}^{\dagger} F_{i\beta}\right)$ $[O_i]_{\Gamma\Gamma'} = \langle \Gamma | \hat{O}_i | \Gamma' \rangle$

Outline

- A. Background notions in many-body theory (board)
- **B.** The GA/gGA wave function: Introduction
- **C.** Derivation gGA method: QE formulation
- - Supplementary topics:
 - Spectral properties
 - Time-dependent extension
 - DFT+gGA

Lecture notes:

https://www.cond-mat.de/events/correl23/manuscripts/lanata.pdf

D. Applications, recent developments and open problems

The Hamiltonian:

i=1

 α,β :

• $[t_{ij}]_{\alpha\beta}$:

i, j: Indices of the tragments of the $\hat{H}^{i}_{loc}[c^{\dagger}_{i\alpha}, c_{i\alpha}]:$ Local operator on fragment iIndices of the fragments of the lattice. Indices of Fermionic modes within each fragment. Matrix elements of the hopping term.

The gGA variational wave function:

 $|\Psi_G\rangle = \hat{\mathscr{P}}_G |\Psi_0\rangle = \prod \hat{\mathscr{P}}_i |\Psi_0\rangle$ i=1

Evaluating and minimizing

 $\langle \Psi_{G} | \hat{H} | \Psi_{G} \rangle = \langle \Psi_{0} | \hat{\mathscr{P}}_{G}^{\dagger} \hat{H} \hat{\mathscr{P}}_{G} | \Psi_{0} \rangle$

The gGA variational wave function:

$|\Psi_G\rangle = \hat{\mathcal{P}}_G |\Psi_0\rangle = \qquad \hat{\mathcal{P}}_i |\Psi_0\rangle$

PHYSICAL REVIEW B 96, 195126 (2017)

Emergent Bloch excitations in Mott matter

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW B 104, L081103 (2021)

Letter

Quantum embedding description of the Anderson lattice model with the ghost Gutzwiller approximation

Marius S. Frank¹, ¹Tsung-Han Lee¹, ²Gargee Bhattacharyya¹, ¹Pak Ki Henry Tsang, ³Victor L. Quito¹, ^{4,3} Vladimir Dobrosavljević, ³Ove Christiansen¹, ⁵ and Nicola Lanatà^{1,6,*}

A few related concepts and methods

Suggestive analogies:

- Matrix product states and projected entangled pair states.
- Ancilla qubit techique (S. Sachdev)
- Hidden Fermion (M. Imada)
- Hidden Fermi liquid (P. Anderson)

 $|\Psi_G\rangle = \hat{\mathscr{P}}_G |\Psi_0\rangle = \int \hat{\mathscr{P}}_i |\Psi_0\rangle$ i=1Auxiliary space Ψ_0 Physical space V G/Д

w.r.t. $\{\Lambda_i\}, |\Psi_0\rangle$ $2^{\nu}i - 1 \ 2^{B\nu}i - 1$ $\hat{\mathcal{P}}_{i} = \sum \left[\Lambda_{i} \right]_{\Gamma_{n}} |\Gamma, i\rangle \langle n, i|$

 $|\Gamma, i\rangle = [c_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)} |0\rangle$ $|n,i\rangle = [f_{i1}^{\dagger}]^{q_1(n)} \dots [f_{iB\nu_i}^{\dagger}]^{q_{B\nu_i}(n)}$

 $\Gamma = 0 \quad n = 0$

 $B \geq 1$ controls the "size" of the auxiliary space

Quantum-embedding formulation

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

PRL 118, 126401 (2017)

PHYSICAL REVIEW LETTERS

week ending 24 MARCH 2017

Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO₂

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Xiaoyu Deng,³ Vladimir Dobrosavljević,¹ and Gabriel Kotliar^{3,4}

PHYSICAL REVIEW B 96, 195126 (2017)

Emergent Bloch excitations in Mott matter

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW B 104, L081103 (2021)

Letter

Quantum embedding description of the Anderson lattice model with the ghost Gutzwiller approximation

Marius S. Frank[®],¹ Tsung-Han Lee[®],² Gargee Bhattacharyya[®],¹ Pak Ki Henry Tsang,³ Victor L. Quito[®],^{4,3} Vladimir Dobrosavljević,³ Ove Christiansen[®],⁵ and Nicola Lanatà[®],^{6,*}

Alternative derivations of gGA equations

 $|\Psi_G\rangle = \hat{\mathscr{P}}_G |\Psi_0\rangle = \hat{\mathscr{P}}_i |\Psi_0\rangle$ i=1Auxiliary space **Physical** Nicola Lanatà[®]* space U

Final equations can be also obtained from **RISB and DMET principles:**

PHYSICAL REVIEW B 105, 045111 (2022)

Operatorial formulation of the ghost rotationally invariant slave-boson theory

PHYSICAL REVIEW B 108, 235112 (2023)

Derivation of the ghost Gutzwiller approximation from quantum embedding principles: Ghost density matrix embedding theory

Nicola Lanatà^{®*}

Outline

A. Background notions in many-body theory (board)

- **B.** The GA/gGA wave function
- **C.** Derivation gGA method: QE formulation

- **Supplementary topics:**
- Spectral properties
- Time-dependent extension
- DFT+gGA

Lecture notes:

https://www.cond-mat.de/events/correl23/manuscripts/lanata.pdf

D. Applications, recent developments and open problems

The gGA variational wave function:

 $|\Psi_G\rangle = \hat{\mathscr{P}}_G |\Psi_0\rangle = \int \hat{\mathscr{P}}_i |\Psi_0\rangle$

 $2^{\nu}i - 1 \ 2^{B\nu}i - 1$ $\hat{\mathcal{P}}_{i} = \sum \left[\Lambda_{i} \right]_{\Gamma_{n}} |\Gamma, i\rangle \langle n, i|$ $\Gamma = 0$ n = 0

 $|\Gamma, i\rangle = [c_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)} |0\rangle$ $|n, i\rangle = [f_{i1}^{\dagger}]^{q_1(n)} \dots [f_{iB\nu_i}^{\dagger}]^{q_{B\nu_i}(n)} |0\rangle$

w.r.t. $\{\Lambda_i\}, |\Psi_0\rangle$

 $2^{\nu_i} \times \gamma^{B\nu_i}$

Physical

space

 Ψ_{G}

$|\Psi_G\rangle$ can be treated only numerically in general

Wick's theorem: $\langle \Psi_0 | f_a^{\dagger} f_b^{\dagger} f_c f_d | \Psi_0 \rangle = \langle \Psi_0 | f_a^{\dagger} f_d | \Psi_0 \rangle \langle \Psi_0 | f_b^{\dagger} f_c | \Psi_0 \rangle - \langle \Psi_0 | f_a^{\dagger} f_c | \Psi_0 \rangle \langle \Psi_0 | f_b^{\dagger} f_d | \Psi_0 \rangle$

Derivation steps:

1. Definition of approximations (GA and G. constraints). 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_i\}, |\Psi_0\rangle$. 3. Definition of slave-boson (SB) amplitudes. 4. Mapping from SB amplitudes to embedding states. 5. Lagrange formulation of the optimization problem.

Evaluating $\langle \Psi_G | \hat{H} | \Psi_G \rangle = \langle \Psi_0 | \hat{\mathscr{P}}_G^{\dagger} \hat{H} \hat{\mathscr{P}}_G | \Psi_0 \rangle$

$$\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$$
$$\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i f_i^{\dagger} f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia} f_{ib} | f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia} f_{ib} | f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia} f_{ib} | f_{ia} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia} f_{ib} | f$$

Gutzwiller approximation:

We will exploit simplifications that become exact in the limit of ∞ -coordination *lattices. In this sense, the gGA is a variational approximation to DMFT.*

Wick's theorem: $\langle \Psi_0 | c_a^{\dagger} c_b^{\dagger} c_c c_d | \Psi_0 \rangle = \langle \Psi_0 | c_a^{\dagger} c_d | \Psi_0 \rangle \langle \Psi_0 | c_b^{\dagger} c_c | \Psi_0 \rangle - \langle \Psi_0 | c_a^{\dagger} c_c | \Psi_0 \rangle \langle \Psi_0 | c_b^{\dagger} c_d | \Psi_0 \rangle$

$f_{ia}^{\dagger}f_{ib}|\Psi_{0}\rangle \quad \forall a,b \in \{1,..,B\nu_{i}\}$

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

Key consequence:

 $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i | \Psi_0 \rangle \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

+ $\langle \Psi_0 | \left[\hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i \right] f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle_{2-legs}$

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

Key consequence:

 $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i | \Psi_0 \rangle \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

+ $\langle \Psi_0 | \left[\hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i \right] f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle_{2-legs}$

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$ Key consequence: $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib}^{\dagger} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

 $+ \langle \Psi_0 | \left[\hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i \right] f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle_{2-legs}$

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

Key consequence:

 $\langle \Psi_0 | \left[\hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i \right] \cdots | \Psi_0 \rangle_{2-legs} = 0$

Derivation steps:

1. Definition of approximations (GA and G. constraints). **2. Evaluation of** $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_i\}, |\Psi_0\rangle$. 3. Definition of slave-boson (SB) amplitudes. 4. Mapping from SB amplitudes to embedding states. 5. Lagrange formulation of the optimization problem.

The Hamiltonian:

i=1

 α,β :

• $[t_{ij}]_{\alpha\beta}$:

i, *j*: $\hat{H}_{loc}^{i}[c_{i\alpha}^{\dagger}, c_{i\alpha}]$: Local operator on fragment *i* Indices of the fragments of the lattice. Indices of Fermionic modes within each fragment. Matrix elements of the hopping term.

Local operators:

 $\langle \Psi_{G} | \hat{H}_{loc}^{i} | \Psi_{G} \rangle = \langle \Psi_{0} | \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k}^{\dagger} \right) \hat{H}_{loc}^{i} \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k} \right) | \Psi_{0} \rangle$ $= \langle \Psi_{0} | \left(\prod_{k \neq i} \hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_{i} \right) | \Psi_{0} \rangle$

Local operators:

 $\langle \Psi_{G} | \hat{H}_{loc}^{i} | \Psi_{G} \rangle = \langle \Psi_{0} | \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k}^{\dagger} \right) \hat{H}_{loc}^{i} \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k} \right) | \Psi_{0} \rangle$ $= \langle \Psi_{0} | \left(\prod_{k \neq i} \hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_{i} \right) | \Psi_{0} \rangle$ $= \langle \Psi_0 | \left(\hat{\mathscr{P}}_k^{\dagger} \hat{\mathscr{P}}_k \right) \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_i^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_i \right) | \Psi_0 \rangle$

Local operators: (disconnected terms)

 $= \langle \Psi_0 | \left(\hat{\mathscr{P}}_k^{\dagger} \hat{\mathscr{P}}_k \right) | \Psi_0 \rangle \times \langle \Psi_0 | \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_i^{\dagger} \hat{H}_{loc}^i \hat{\mathscr{P}}_i \right) | \Psi_0 \rangle$

Local operators: (disconnected terms)

 $\langle \Psi_{0} | \widehat{(\hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k})} \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_{i} \right) | \Psi_{0} \rangle$ $= \langle \Psi_0 | \left(\hat{\mathscr{P}}_k^{\dagger} \hat{\mathscr{P}}_k \right) | \Psi_0 \rangle \times \langle \Psi_0 | \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_i^{\dagger} \hat{H}_{loc}^i \hat{\mathscr{P}}_i \right) | \Psi_0 \rangle$

Local operators: (connected terms 2 legs)

 $\langle \Psi_0 | \left[\hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i \right] \cdots | \Psi_0 \rangle_{2-legs} = 0$

 $\forall a, b$

Local operators: (connected terms >2 legs)

(Exact in limit of ∞ dimension)

(G. Approximation)

Local operators: $\langle \Psi_{G} | \hat{H}_{loc}^{i} | \Psi_{G} \rangle = \langle \Psi_{0} | \left(\hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k} \right) \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_{i} \right) | \Psi_{0} \rangle$ (GA and G. constraints) $\approx \langle \Psi_0 | \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_i^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_i \right) | \Psi_0 \rangle$

Local operators: $\langle \Psi_{G} | \hat{H}_{loc}^{i} | \Psi_{G} \rangle = \langle \Psi_{0} | \left(\hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k} \right) \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_{i} \right) | \Psi_{0} \rangle$ (GA and G. constraints) $\approx \langle \Psi_0 | \left(\prod_{k' \neq i,k} \hat{\mathscr{P}}_{k'}^{\dagger} \hat{\mathscr{P}}_{k'} \right) \left(\hat{\mathscr{P}}_i^{\dagger} \hat{H}_{loc}^{i} \hat{\mathscr{P}}_i \right) | \Psi_0 \rangle$

The Hamiltonian:

i=1

 α,β :

• $[t_{ij}]_{\alpha\beta}$:

i, j: Indices of the tragments of the $\hat{H}^{i}_{loc}[c^{\dagger}_{i\alpha}, c_{i\alpha}]:$ Local operator on fragment iIndices of the fragments of the lattice. Indices of Fermionic modes within each fragment. Matrix elements of the hopping term.

Non-Local 1-body operators, i.e., $i \neq j$:

 $\langle \Psi_{G} | c_{i\alpha}^{\dagger} c_{j\beta} | \Psi_{G} \rangle = \langle \Psi_{0} | \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k}^{\dagger} \right) c_{i\alpha}^{\dagger} c_{j\beta} \left(\prod_{k=1}^{\mathcal{N}} \hat{\mathscr{P}}_{k} \right) | \Psi_{0} \rangle$ $= \langle \Psi_{0} | \left(\prod_{k \neq i,j} \hat{\mathscr{P}}_{k}^{\dagger} \hat{\mathscr{P}}_{k} \right) \left(\hat{\mathscr{P}}_{i}^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_{i} \right) \left(\hat{\mathscr{P}}_{j}^{\dagger} c_{j\beta} \hat{\mathscr{P}}_{j} \right) | \Psi_{0} \rangle$

Non-Local 1-body operators, i.e., $i \neq j$: $\langle \Psi_{G} | c_{i\alpha}^{\dagger} c_{j\beta}^{\dagger} | \Psi_{G} \rangle \approx \langle \Psi_{0} | \left(\hat{\mathcal{P}}_{i}^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathcal{P}}_{i} \right) \left(\hat{\mathcal{P}}_{j}^{\dagger} c_{j\beta} \hat{\mathcal{P}}_{j} \right) | \Psi_{0} \rangle$ **Constructed** with $\{f_{ia}, f_{ia}^{\dagger}\}$ operators **Constructed** with $\{f_{ja}, f_{ja}^{\dagger}\}$ operators $C_{i\alpha}^{\dagger}$

Non-Local 1-body operators, i.e., $i \neq j$:

 $\langle \Psi_{G} | c_{i\alpha}^{\dagger} c_{j\beta} | \Psi_{G} \rangle \approx \langle \Psi_{0} | \left(\hat{\mathcal{P}}_{i}^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathcal{P}}_{i} \right) \left(\hat{\mathcal{P}}_{j}^{\dagger} c_{j\beta} \hat{\mathcal{P}}_{j} \right) | \Psi_{0} \rangle$ $B\nu_i B\nu_j$ $= \sum \sum \langle \Psi_0 | \left([\mathcal{R}_i]_{a\alpha} f_{ia}^{\dagger} \right) \left([\mathcal{R}_j]_{\beta b}^{\dagger} f_{jb} \right) | \Psi_0 \rangle$ a=1 b=1

b=1

Where \mathcal{R}_i is determined by: $B\nu_i$ $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_i f_{ia} | \Psi_0 \rangle = \sum [\mathscr{R}_i]_{b\alpha} \langle \Psi_0 | f_{ib}^{\dagger} f_{ia} | \Psi_0 \rangle$

 $\hat{H} = \sum_{i=1}^{N} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] + \sum_{i=1}^{\nu_{i}} \sum_{\alpha\beta} [t_{ij}]_{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$ i=1 $\alpha = 1 \beta = 1$ $\mathscr{E} = \sum_{i=1}^{\mathcal{N}} \sum_{j=1}^{B_{\nu_{i}}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ch} \langle \Psi_{0} | f_{ia}^{\dagger} f_{jb} | \Psi_{0} \rangle + \sum_{i=1}^{\mathcal{N}} \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} [c_{ia}^{\dagger}, c_{ia}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle$ $i, j=1 \ a, b=1$ i=1

b=1

Where: $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_i f_{ia} | \Psi_0 \rangle = \sum [\mathscr{R}_i]_{b\alpha} \langle \Psi_0 | f_{ib}^{\dagger} f_{ia} | \Psi_0 \rangle$

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i^{} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle \qquad \forall a, b \in \{1, ..., B\nu_i\}$

Derivation steps:

2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_i\}, | \Psi_0 \rangle$.

3. Definition of slave-boson (SB) amplitudes.

4. Mapping from SB amplitudes to embedding states.

5. Lagrange formulation of the optimization problem.

(Connection with RISB)

- 1. Definition of approximations (GA and G. constraints).

 $\mathscr{E} = \sum_{i=1}^{N} \sum_{j=1}^{B\nu_{i}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{ia}^{\dagger} f_{jb} | \Psi_{0} \rangle + \sum_{i=1}^{N} \left\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle \right]$ i, j=1 a, b=1

 $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} \hat{\mathscr{P}}_i^{} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \hat{\mathcal{P}}_i^{\dagger} \hat{\mathcal{P}}_i f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle$

Where: $\langle \Psi_0 | \hat{\mathscr{P}}_i^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_i f_{ia} | \Psi_0 \rangle = \sum_{i=1}^{D\nu_i} [\mathscr{R}_i]_{b\alpha} \langle \Psi_0 | f_{ib}^{\dagger} f_{ia} | \Psi_0 \rangle$

$\forall a, b \in \{1, ..., B\nu_i\}$

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle = \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i} \right] = 1$$

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} f_{ia}^{\dagger} f_{ib} | \Psi_{0} \rangle = \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i} \tilde{F}_{ia}^{\dagger} \tilde{F}_{ib} \right] =$$

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle = \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \tilde{F}_{i\alpha}^{\dagger} \Lambda_{i} \tilde{F}_{ia}^{\dagger} \right]$$

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_{i} f_{ia} | \Psi_{0} \rangle = \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} F_{i\alpha}^{\dagger} \Lambda_{i} \tilde{F}_{ia}^{\dagger} \right]$$

Where:

$$P_{i}^{0} \propto \exp\left\{-\sum_{a,b=1}^{B\nu_{i}}\left[\ln\left(\frac{1-\Delta_{i}^{T}}{\Delta_{i}^{T}}\right)\right]_{ab}\tilde{F}_{ia}^{\dagger}\tilde{F}_{ib}\right]$$

$$[F_{i\alpha}]_{\Gamma\Gamma'} = \langle\Gamma, i \mid c_{i\alpha} \mid \Gamma', i\rangle$$

$$[\tilde{F}_{ia}]_{nn'} = \langle n, i \mid f_{ia} \mid n', i\rangle$$

 $= \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle =: [\Delta_i]_{ab}$ $\hat{H}^{i}_{loc}[F^{\dagger}_{i\alpha}, F_{i\alpha}]\Lambda_{i}]$ $= \sum_{i=1}^{B\nu_{i}} [\mathscr{R}_{i}]_{b\alpha} [\Delta_{i}]_{b\alpha}$ b=1 $2^{\nu_i} - 1 \ 2^{B_{\nu_i}} - 1$ $\hat{\mathcal{P}}_{i} = \sum \left[\Lambda_{i} \right]_{\Gamma n} |\Gamma, i\rangle \langle n, i|$ $\Gamma = 0 \quad n = 0$ $|\Gamma, i\rangle = [c_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{i\nu}^{\dagger}]^{q_{\nu_i}(\Gamma)} |0\rangle$ $|n,i\rangle = [f_{i1}^{\dagger}]^{q_1(n)} \dots [f_{iB\nu_i}^{\dagger}]^{q_{B\nu_i}(n)} |0\rangle$

$$\begin{split} \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle &= \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i} \right] = 1 \\ \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} f_{ia}^{\dagger} f_{ib} | \Psi_{0} \rangle &= \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i} \tilde{F}_{ia}^{\dagger} \tilde{F}_{ib} \right] = \\ \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle &= \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} \tilde{F}_{ia}^{\dagger} \tilde{A}_{i} \tilde{F}_{ia}^{\dagger} \right] \\ \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} c_{i\alpha}^{\dagger} \hat{\mathscr{P}}_{i} f_{ia} | \Psi_{0} \rangle &= \operatorname{Tr} \left[P_{i}^{0} \Lambda_{i}^{\dagger} F_{i\alpha}^{\dagger} \Lambda_{i} \tilde{F}_{ia} \right] \end{split}$$

$$P_i^0 \propto \exp\left\{-\sum_{a,b=1}^{B\nu_i} \left[\ln\left(\frac{1-\Delta_i^T}{\Delta_i^T}\right)\right]_{ab} \tilde{F}_{ia}^{\dagger} \tilde{F}_{ib}\right\}$$

 $= \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle =: [\Delta_i]_{ab}$ ${}^{\dagger}_{i}\hat{H}^{i}_{loc}[F^{\dagger}_{i\alpha},F_{i\alpha}]\Lambda_{i}]$ $= \sum_{i=1}^{B\nu_{i}} [\mathcal{R}_{i}]_{b\alpha} [\Delta_{i}]_{ba}$ b=1

Matrix of SB amplitudes:

•

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle = \operatorname{Tr} \left[\phi_{i}^{\dagger} \phi_{i} \right] = 1$$

$$\langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{\mathscr{P}}_{i} f_{ia}^{\dagger} f_{ib} | \Psi_{0} \rangle = \operatorname{Tr} \left[\phi_{i}^{\dagger} \phi_{i} \tilde{F}_{ia}^{\dagger} \tilde{F}_{ib} \right] = \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{ioc}^{\dagger} [c_{i\alpha}^{\dagger}, c_{i\alpha}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle = \operatorname{Tr} \left[\phi_{i} \phi_{i}^{\dagger} \phi_{i}^{\dagger} \tilde{F}_{ib}^{\dagger} \right] = \langle \Psi_{0} | \hat{\mathscr{P}}_{i}^{\dagger} \hat{H}_{ioc}^{\dagger} [c_{i\alpha}^{\dagger}, c_{i\alpha}] \hat{\mathscr{P}}_{i} | \Psi_{0} \rangle = \operatorname{Tr} \left[\phi_{i} \phi_{i}^{\dagger} \phi_{i}^{\dagger} \right]$$

$$\operatorname{Tr}\left[\phi_{i}^{\dagger}F_{i\alpha}^{\dagger}\phi_{i}\tilde{F}_{ia}\right] = \sum_{c=1}^{B\nu_{i}} \left[\mathscr{R}_{i}\right]_{c\alpha} \left[\Delta_{i}(1-\Delta_{i})\right]_{c\alpha} \left[\Delta_{i}(1-\Delta_{i})\right]_{$$

$$[F_{i\alpha}]_{\Gamma\Gamma'} = \langle \Gamma, i | c_{i\alpha} | \Gamma', i \rangle$$
$$[\tilde{F}_{i\alpha}]_{nn'} = \langle n, i | f_{i\alpha} | n', i \rangle$$

 $|\Psi_0|f_{ia}^{\dagger}f_{ib}|\Psi_0\rangle =: [\Delta_i]_{ab}$

 $\hat{F}\hat{H}^{i}_{loc}[F^{\dagger}_{i\alpha}, F_{i\alpha}]$

 $\hat{H} = \sum_{i=1}^{N} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{\alpha\beta} [t_{ij}]_{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$ $i \neq j \quad \alpha = 1 \quad \beta = 1$ i=1 $\mathscr{E} = \sum_{i=1}^{N} \sum_{j=1}^{B_{\nu_{i}}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{ia}^{\dagger} f_{jb} | \Psi_{0} \rangle + \sum_{i=1}^{N} \operatorname{Tr} \left[\phi_{i} \phi_{i}^{\dagger} \hat{H}_{loc}^{i} [F_{ia}^{\dagger}, F_{ia}] \right]$ $i, j=1 \ a, b=1$ Where: $\operatorname{Tr}\left[\phi_{i}^{\dagger}F_{i\alpha}^{\dagger}\phi_{i}\tilde{F}_{ia}\right] = \sum_{i=1}^{B\nu_{i}}\left[\mathscr{R}_{i}\right]_{c\alpha}\left[\Delta_{i}(1-\Delta_{i})\right]_{ca}^{\frac{1}{2}}$ c=1 $\operatorname{Tr} \left[\phi_{i}^{\dagger} \phi_{i} \right] = 1$ $\operatorname{Tr} \left[\phi_{i}^{\dagger} \phi_{i} \tilde{F}_{ia}^{\dagger} \tilde{F}_{ib} \right] = \langle \Psi_{0} | f_{ia}^{\dagger} f_{ib} | \Psi_{0} \rangle$ $\forall a, b \in \{1, \dots, B\nu_i\}$

Derivation steps:

2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_i\}, | \Psi_0 \rangle$. 3. Definition of slave-boson (SB) amplitudes. 4. Mapping from SB amplitudes to embedding states. 5. Lagrange formulation of the optimization problem.

- 1. Definition of approximations (GA and G. constraints).

(Connection with QE theories and DMET)

Quantum-embedding formulation

 $2^{\nu}i - 1 \ 2^{B\nu}i - 1$ $[\phi_i]_{\Gamma n} \longrightarrow |\Phi_i\rangle = \sum_{\Gamma=0} \sum_{n=0} [\phi_i]_{\Gamma n} |\Gamma;i\rangle \otimes |n;i\rangle$ $2^{\nu_i} \times 2^{B\nu_i}$

<u>A useful trick</u>: interpret the variational parameters $\phi_i = \Lambda_i \sqrt{P_i^0}$ as coefficients parametrizing an AIM state

 $|n,i\rangle = [b_{i1}^{\dagger}]^{q_1(n)} \dots [b_{iB\nu_i}^{\dagger}]^{q_{B\nu_i}(n)} |0\rangle$

Quantum-embedding

 $2^{\nu_i} - 1 \ 2^{B_{\nu_i}} - 1$ $[\phi_i]_{\Gamma n} \longrightarrow |\Phi_i\rangle = \sum \sum e^i$ $\int \frac{2^{\nu_i} \times 2^{B\nu_i}}{2^{\nu_i} \times 2^{B\nu_i}} \int \frac{2^{\nu_i} \sum \frac{2^{\nu_i}}{1 - 2^{\nu_i}}}{2^{\nu_i} \sum \frac{2^{\nu_i}}{1 - 2^{\nu_i}}}$ N(

If $|\Psi_G\rangle$ eigenstate of number opera

 $\sum_{i=1}^{\nu_{i}} c_{\alpha}^{\dagger} c_{\alpha} + \sum_{i=1}^{B\nu_{i}} b_{a}^{\dagger} b_{a} | \Phi_{i} \rangle = \frac{B+1}{2} \nu_{i}$ *a*=1 $\alpha = 1$

formulation

$$2^{\nu_{i}} \times 2^{B\nu_{i}}$$

$$\stackrel{i\pi}{2}N(n)(N(n)-1) [\phi_{i}]_{\Gamma n} | \Gamma; i \rangle \otimes U_{PH}$$

$$(n) = \sum_{a=1}^{B\nu_{i}} q_{a}(n)$$

$$\stackrel{\uparrow}{(i\alpha)} \qquad b_{ia}^{\dagger}$$

$$hor:$$

$$|\Phi_i\rangle \qquad |\Gamma,i\rangle = [c_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)} | q_{\nu_i}(\Gamma)|$$
$$|n,i\rangle = [b_{i1}^{\dagger}]^{q_1(n)} \dots [b_{iB\nu_i}^{\dagger}]^{q_{B\nu_i}(n)}$$

Quantum-embedding formulation

 $2^{\nu_i} \times 2^{B\nu_i}$ $\Gamma=0$ n=0

$\operatorname{Tr}\left[\phi_{i}^{\dagger}\phi_{i}F_{ia}^{\dagger}F_{ib}\right] = \langle \Phi_{i}|b_{ib}b_{ia}^{\dagger}|\Phi_{i}\rangle = [\Delta_{i}]_{ab}$

 $\operatorname{Tr}\left[\phi_{i}\phi_{i}^{\dagger}\hat{H}_{loc}^{i}[F_{i\alpha}^{\dagger},F_{i\alpha}]\right] = \langle \Phi_{i}|\hat{H}_{loc}^{i}[c_{i\alpha}^{\dagger},c_{i\alpha}]|\Phi_{i}\rangle$ $\operatorname{Tr}\left[\phi_{i}^{\dagger}F_{i\alpha}^{\dagger}\phi_{i}F_{i\alpha}\right] = \left\langle \Phi_{i}\right|c_{i\alpha}^{\dagger}b_{i\alpha}\left|\Phi_{i}\right\rangle$

 $\hat{H} = \sum_{i} \hat{H}_{loc}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] + \sum_{i} \sum_{j} \sum_{i} [t_{ij}]_{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta}$ $i \neq j \quad \alpha = 1 \quad \beta = 1$ i=1 $\mathscr{E} = \sum_{i=1}^{N} \sum_{j=1}^{B\nu_{i}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{ia}^{\dagger}$ $i, j=1 \ a, b=1$ Where: $\langle \Phi_i | c_{i\alpha}^{\dagger} b_{ia} | \Phi_i \rangle = \sum [S_i]$ a=1 $\langle \Phi_i | \Phi_i \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Phi_i | b_{ib}^{\dagger} b_{ia} | \Phi_i \rangle = \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle = [\Delta_i]_{ab}, \quad \forall a, b = 1, \dots, B\nu_i$

$$\hat{f}_{a}f_{jb}|\Psi_{0}\rangle + \sum_{i=1}^{\mathcal{N}} \langle \Phi_{i}|\hat{H}_{loc}^{i}[c_{i\alpha}^{\dagger}, c_{i\alpha}]|\Phi$$

$$\hat{\mathcal{R}}_{i}]_{a\alpha} [\Delta_{i}(\mathbf{1}-\Delta_{i})]_{ab}^{\frac{1}{2}}$$

Derivation steps:

2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_i\}, | \Psi_0 \rangle$. 3. Definition of slave-boson (SB) amplitudes. 4. Mapping from SB amplitudes to embedding states. 5. Lagrange formulation of the optimization problem.

- **1. Definition of approximations (GA and G. constraints).**

 $\mathscr{E} = \sum_{i=1}^{N} \sum_{j=1}^{B\nu_{i}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{i}$ $i, j=1 \ a, b=1$

Where: $\langle \Phi_i | c_{i\alpha}^{\dagger} b_{ia} | \Phi_i \rangle = \sum_{i\alpha}^{b_i} b_{i\alpha} | \Phi_i \rangle$

a=1

$$\begin{split} \langle \Psi_0 | \Psi_0 \rangle &= 1 \\ \langle \Phi_i | \Phi_i \rangle &= 1 \\ \langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle &=: [\Delta_i]_{ab} \\ \langle \Phi_i | b_{ib}^{\dagger} b_{ia}^{\dagger} | \Phi_i \rangle &= [\Delta_i]_{ab} \end{split}$$

$$\sum_{ia}^{\mathcal{A}} f_{jb} |\Psi_0\rangle + \sum_{i=1}^{\mathcal{N}} \langle \Phi_i | \hat{H}_{loc}^i [c_{i\alpha}^{\dagger}, c_{i\alpha}] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{\dagger}, c_{i\alpha}] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i\alpha}^{i}]] | \Phi_i^{i} [c_{i$$

 $\mathscr{E} = \sum_{i=1}^{N} \sum_{j=1}^{B\nu_{i}} \left[\mathscr{R}_{i} t_{ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{ia}^{\dagger} f_{jb} | \Psi_{0} \rangle + \sum_{i=1}^{N} \langle \Phi_{i} | \hat{H}_{loc}^{i} [c_{ia}^{\dagger}, c_{ia}] | \Phi_{i} \rangle$ i, j=1 a, b=1Where: $\langle \Phi_i | c_{i\alpha}^{\dagger} b_{ia} | \Phi_i \rangle = \sum_{i}^{i} [\mathcal{R}_i]_{a\alpha} [\Delta_i (1 - \Delta_i)]_{ab}^{\frac{1}{2}}$ a=1 $\langle \Psi_0 | \Psi_0 \rangle = 1$ \mathcal{D}_i $E_{:}^{c}$ $\langle \Phi_i | \Phi_i \rangle = 1$

 $\langle \Psi_0 | f_{ia}^{\dagger} f_{ib} | \Psi_0 \rangle =: [\Delta_i]_{ab}$

 $\langle \Phi_i | b_{ib} b_{ia}^{\dagger} | \Phi_i \rangle = [\Delta_i]_{ab}$

 Λ_i ab $[\lambda_i^c]_{ab}$

Lagrange function:

 $\mathcal{L} = \langle \Psi_0 | \hat{H}_{qp}[\mathcal{R}, \lambda] | \Psi_0 \rangle + E \left(1 - \langle \Psi_0 | \Psi_0 \rangle \right)$ Impurity $+\sum_{i=1}^{\mathcal{N}} \left[\langle \Phi_i | \hat{H}_i^{emb} [\mathcal{D}_i, \lambda_i^c] | \Phi_i \rangle + E_i^c \left(1 - \langle \Phi_i | \Phi_i \rangle \right) \right]$ i=1 $-\sum_{i=1}^{\mathcal{N}} \left[\sum_{a,b=1}^{B\nu_{i}} \left(\left[\lambda_{i} \right]_{ab} + \left[\lambda_{i}^{c} \right]_{ab} \right) \left[\Delta_{i} \right]_{ab} + \sum_{c,a=1}^{B\nu_{i}} \sum_{\alpha=1}^{\nu_{i}} \left(\left[\mathscr{D}_{i} \right]_{a\alpha} \left[\mathscr{R}_{i} \right]_{c\alpha} \left[\Delta_{i} (\mathbf{1} - \Delta_{i}) \right]_{ca}^{\frac{1}{2}} + \text{c.c.} \right) \right]$ $\hat{H}_{qp}[\mathcal{R},\Lambda] = \sum_{i,j=1}^{\mathcal{N}} \sum_{a,b=1}^{B\nu_i} \left[\mathcal{R}_i t_{ij} \mathcal{R}_j^{\dagger} \right]_{ab} f_{ia}^{\dagger} f_{jb} + \sum_{i=1}^{\mathcal{N}} \sum_{a,b=1}^{B\nu_i} \left[\lambda_i \right]_{ab} f_{ia}^{\dagger} f_{ib}$

 $a=1 \alpha=1$

Lagrange equations:

 $\left[\Pi_{i}f\left(\mathscr{R}t\mathscr{R}^{\dagger}+\lambda\right)\Pi_{i}\right]_{ba}=\left[\Delta_{i}\right]_{ab}$

$$\left[\Pi_{i}t\mathscr{R}^{\dagger}f\left(\mathscr{R}t\mathscr{R}^{\dagger}+\lambda\right)\Pi_{i}\right]_{\alpha a}=\sum_{c=1}^{B\nu_{i}}\left[\mathscr{D}_{i}\right]_{c\alpha}\left[\Delta_{i}\left(1-\Delta_{i}\right)\right]_{ac}^{\frac{1}{2}}$$

$$\sum_{c,b=1}^{B\nu_i} \sum_{\alpha=1}^{\nu_i} \frac{\partial}{\partial \left[d_i^0\right]_{\mathcal{S}}} \left(\left[\Delta_i \left(1 - \Delta_i\right) \right]_{cb}^{\frac{1}{2}} \left[\mathfrak{D}_i \right]_{b\alpha} \left[\mathfrak{R}_i \right]_{c\alpha} + c \right]_{c\alpha} \right)$$

$$\hat{H}^{i}_{emb}[\mathcal{D}_{i},\lambda^{c}_{i}]|\Phi_{i}\rangle = E^{c}_{i}|\Phi_{i}\rangle \longrightarrow |\Phi_{i}\rangle$$

$$\langle \Phi_i | c_{i\alpha}^{\dagger} b_{ia} | \Phi_i \rangle - \sum_{c=1}^{B\nu_i} \left[\Delta_i \left(1 - \Delta_i \right) \right]_{ca}^{\frac{1}{2}} \left[\mathcal{R}_i \right]_{c\alpha} = 0$$

 $\langle \Phi_i | b_{ib} b_{ia}^{\dagger} | \Phi_i \rangle - \left[\Delta_i \right]_{ab} = 0$

Selfconsistency

 \mathcal{D}_i

Cia

c. $+ [l_i + l_i^c]_s = 0$

 $\Delta_{i} = \sum_{s=1}^{(B\nu_{i})^{2}} \left[d_{i}^{0}\right]_{s} \left[h_{i}^{T}\right]_{s}$ $(B\nu_{i})^{2}$ $\sum_{i} \left[h_{i} \right]_{i}$ s=1 $\lambda_i^c = \sum_{s=1}^{(B\nu_i)^2} \left[l_i^c \right]_s \left[h_i \right]_s$

 b_{ia}^{\dagger}

Lagrange equations:

$$\left[\Pi_{i}f\left(\mathscr{R}t\mathscr{R}^{\dagger}+\lambda\right)\Pi_{i}\right]_{ba}=\left[\Delta_{i}\right]_{ab}$$

$$\left[\Pi_{i}t\mathscr{R}^{\dagger}f\left(\mathscr{R}t\mathscr{R}^{\dagger}+\lambda\right)\Pi_{i}\right]_{\alpha a}=\sum_{c=1}^{B\nu_{i}}\left[\mathscr{D}_{i}\right]_{c\alpha}\left[\Delta_{i}\left(1-\Delta_{i}\right)^{2}\right]_{c\alpha}\left[\Delta_{i}\left(1-\Delta_{i}\right)$$

$$\sum_{c,b=1}^{B\nu_i} \sum_{\alpha=1}^{\nu_i} \frac{\partial}{\partial \left[d_i^0\right]_s} \left(\left[\Delta_i \left(1 - \Delta_i\right) \right]_{cb}^{\frac{1}{2}} \left[\mathfrak{D}_i \right]_{b\alpha} \left[\mathfrak{R}_i \right]_{c\alpha} + c \right] \right)$$

$$\hat{H}^{i}_{emb}[\mathcal{D}_{i},\lambda^{c}_{i}]|\Phi_{i}\rangle = E^{c}_{i}|\Phi_{i}\rangle \longrightarrow |\Phi|$$

 $\langle \Phi_i | b_{ib} b_{ia}^{\dagger} | \Phi_i \rangle - \left[\Delta_i \right]_{ab} = 0$

<u>Summary</u>: Connection between different theoretical frameworks (gGA, DMFT, RISB, DMET)

$\langle \Psi_G | \hat{H} | \Psi_G \rangle = \langle \Psi_0 | \hat{\mathscr{P}}_G^{\dagger} \hat{H} \hat{\mathscr{P}}_G | \Psi_0 \rangle$

gGA (variational)

 $[\Lambda_i]_{\Gamma_n} \to [\phi_i]_{\Gamma_n} \to |\Phi_i\rangle$ (gRISB) Quantum $d \rightarrow \infty$ Embedding (DMFT) (gDMET)

Self-consistency

 $2^{\nu_i} \times 2^{B\nu_i}$

 $(\alpha = 1, ..., \nu_i)$

 $(a = 1, ..., B\nu_i)$

 $\Lambda_{:}^{c}$

Outline

- A. Background notions in many-body theory (board)
- **B.** The GA/gGA wave function: Introduction
- C. Derivation gGA method: QE formulation
- - **Supplementary topics:**
 - Spectral properties
 - Time-dependent extension
 - DFT+gGA

D. Applications, recent developments and open problems

Applications, recent developments and open problems

1. Single-band Hubbard model

- 2. Single-band Anderson Lattice model
- 3. Three-band Hubbard model
- 4. <u>Real materials: DFT+gGA (NiO)</u>

5. Extensions and future applications

1-Band Hubbard model:

Accuracy of ghost rotationally invariant slave-boson and dynamical mean field theory as a function of the impurity-model bath size

Tsung-Han Lee⁽⁾,^{1,*} Nicola Lanatà⁽⁾,² and Gabriel Kotliar^{1,3}

1-Band Hubbard model:

TABLE I. The g-RISB total energy at U = 2.4 and filling n = 1 and n = 0.75 with different numbers of bath orbitals N_b . The DMFT energy at $\beta = 200$ with the CTQMC solver is shown for comparison.

n	$N_b = 1$	$N_b = 3$	$N_b = 5$	$N_b = 7$	CTQMC
1	-0.03637	-0.06155	-0.06189	-0.06199	$-0.0621 \pm 0.0000000000000000000000000000000000$
0.75	-0.21829	-0.23158	-0.23189	-0.23190	

 $N_b = 1$ $N_{b} = 3$

Variational: Energy decreases as we increase N_b

1-Band Anderson Lattice Model

PHYSICAL REVIEW B 104, L081103 (2021)

Quantum embedding description of the Anderson lattice model with the ghost Gutzwiller approximation

Marius S. Frank¹, ¹Tsung-Han Lee¹, ²Gargee Bhattacharyya¹, ¹Pak Ki Henry Tsang, ³Victor L. Quito¹, ^{4,3} Vladimir Dobrosavljević, ³Ove Christiansen¹, ⁵ and Nicola Lanatà^{1,6,*}

$$\begin{split} \hat{H} &= \sum_{ij} \sum_{\sigma} \left(t_{ij} + \delta_{ij} \epsilon_p \right) p_{i\sigma}^{\dagger} p_{j\sigma} + \sum_i \frac{U}{2} \left(\hat{n}_{di} + V \sum_{i\sigma} \left(p_{i\sigma}^{\dagger} d_{i\sigma} + \text{H.c.} \right) - \mu \sum_i \hat{N}_i \right) \end{split}$$

Ghost extension <u>necessary</u> to capture interplay between Mott physics and hybridization between correlated and itinerant degrees of freedom

3-Band Hubbard model:

PHYSICAL REVIEW B 108, 245147 (2023)

Accuracy of ghost-rotationally-invariant slave-boson theory for multiorbital Hubbard models and realistic materials

Tsung-Han Lee⁽⁾,^{1,2,*} Corey Melnick,³ Ran Adler,¹ Nicola Lanatà⁽⁾,^{4,5} and Gabriel Kotliar^{1,3}

$$N_{b} = 3 \times 5 =$$

$$N_{b} = 3 \times 3 = 9$$

$$M_{b} = 3 \times 3 = 9$$

$$M_{b} = 3 \times 3 = 9$$

$$M_{b} = 3 \times 5 =$$

$$M_{b} = 3 \times 3 = 9$$

$$M_{b} = 3 \times 5 =$$

$$M_$$

3-Band Hubbard model:

PHYSICAL REVIEW B 108, 245147 (2023)

Accuracy of ghost-rotationally-invariant slave-boson theory for multiorbital Hubbard models and realistic materials

Tsung-Han Lee⁽⁾,^{1,2,*} Corey Melnick,³ Ran Adler,¹ Nicola Lanatà⁽⁾,^{4,5} and Gabriel Kotliar^{1,3}

					$N_b = 3 \times 5 =$
	= 1 ×	3 = 3	$N_b = 3$	$3 \times 3 = 9$	
Total energy					
	U	$N_b = 3$	$N_b = 9$	$N_b = 15$	DMFT-CTQMC
	1.0	0.412	0.389	0.388	0.389
	2.5	1.875	1.774	1.773	1.772
	1.5	-0.174	-0.208	-0.209	-0.208
	2.5	0.2506	0.192	0.189	0.193

Benchmark calculations NiO (DFT+gGA): -43653.6 -43653.8 **Self-consistency** -43654.0LDA+g-RISB (eV) 43654.2 LDA+RISB LDA (shifted down 302.342eV) LDA+DMFT -43654.4 **Impurity** *i* **Bath** i -43654.6 DFT+gGA written by Tsung-Han

Charge self-consistent density functional theory plus ghost rotationally-invariant slave-boson theory for correlated materials

Tsung-Han Lee^{1,2}, Corey Melnick³, Ran Adler¹, Xue Sun¹, Yongxin Yao⁴, Nicola Lanatà^{5,6}, Gabriel Kotliar^{1,3}

- Lee, built on ComRISB DFT+GA code by Yongxin Yao et. al
- DFT+DMFT (CTQMC) generated using Kristjan Haule's code https:// www.physics.rutgers.edu/~haule/

19.5

20.0

Benchmark calculations NiO (DFT+gGA):

Charge self-consistent density functional theory plus ghost rotationally-invariant slave-boson theory for correlated materials

Tsung-Han Lee^{1,2}, Corey Melnick³, Ran Adler¹, Xue Sun¹, Yongxin Yao⁴, Nicola Lanatà^{5,6}, Gabriel Kotliar^{1,3}

1. Less computationally demanding than DMFT

2. Practically as accurate as DMFT for groundstate properties (with "ghost" extension)

3. Variational (T=0)

3. Flexible (e.g., possible extension to nonequilibrium dynamics)

Key features of gGA:

Implementations

1. ComRISB (only GA for now):

https://www.bnl.gov/comscope/software/downloads.php For further inquiries, contact Yongxin Yao at ykent@iastate.edu.

2. Portobello (GA/gGA): Computer Physics Communicatio

3. Pedagogical gGA code for 1-band Hubbard Model:

https://gitlab.com/collaborations3/g-ga-hubbard For further inquiries, contact Marius Frank at marius.frank@chem.au.dk.

4. Implementation within TRIQS under development

Computer Physics Communications 294, 108907 (2024), ISSN 0010- 4655

Potential extensions and Perspectives

1. Efficient impurity solvers for ground state:

- Matrix Product States
- Variational Quantum Eigensolvers
- Neural Network States
- Machine Learning

2. Extensions based on RISB/DMET perspectives:

- Gaussian fluctuations, non-local interactions ...

3. Applications: Structure dynamics (td-gGA) ...

PHYSICAL REVIEW RESEARCH 6, 013242 (2024)

Active learning approach to simulations of strongly correlated matter with the ghost Gutzwiller approximation

Marius S. Frank¹, Denis G. Artiukhin¹, Tsung-Han Lee, Yongxin Yao¹, Kipton Barros, Ove Christiansen, and Nicola Lanatà^{8,9,*}

3. Applications: Structure prediction, Catalysis, Quantum

Outline

- A. Background notions in many-body theory (board)
- **B.** The GA/gGA wave function: Introduction
- **C.** Derivation gGA method: QE formulation
- - **Supplementary topics:**
 - Spectral properties
 - Time-dependent extension
 - DFT+gGA

D. Applications, recent developments and open problems

THANK YOU FOR YOUR ATTENTION !!!

Supplemental topic 1: Spectral properties

$$\begin{aligned} \mathscr{L} &= \langle \Psi_{0} | \hat{H}_{qp}[\mathscr{R}, \lambda] | \Psi_{0} \rangle + E \left(1 - \langle \Psi_{0} | \Psi_{0} \rangle \right) \\ &+ \sum_{i=1}^{\mathcal{N}} \left[\langle \Phi_{i} | \hat{H}_{i}^{emb}[\mathscr{D}_{i}, \lambda_{i}^{c}] | \Phi_{i} \rangle + E_{i}^{c} \left(1 - \langle \Phi_{i} | \Phi_{i} \rangle \right) \right] \end{aligned} \qquad \begin{array}{l} \text{Iteratively calc} \\ &\text{of } \hat{H}_{qp} \text{, but its} \\ &\text{also correspon} \end{aligned} \\ &- \sum_{i=1}^{\mathcal{N}} \left[\sum_{a,b=1}^{\mathcal{B}_{i}} \left(\left[\lambda_{i} \right]_{ab} + \left[\lambda_{i}^{c} \right]_{ab} \right) \left[\Delta_{i} \right]_{ab} + \sum_{c,a=1}^{\mathcal{B}_{i}} \sum_{\alpha=1}^{\nu_{i}} \left(\left[\mathscr{D}_{i} \right]_{a\alpha} \left[\mathscr{R}_{i} \right]_{c\alpha} \left[\Delta_{i} (1 - \Delta_{i}) \right]_{ca}^{\frac{1}{2}} + \text{c.c.} \right) \right] \end{aligned}$$

$$\hat{H}_{qp}[\mathscr{R},\Lambda] = \sum_{i,j=1}^{\mathcal{N}} \sum_{a,b=1}^{B\nu_i} \left[\mathscr{R}_i t_{ij} \mathscr{R}_j^{\dagger} \right]_{ab} f_{ia}^{\dagger} f_{jb} + \sum_{i=1}^{\mathcal{N}} \sum_{a,b=1}^{B\nu_i} \left[\lambda_i \right]_{ab} f_{ia}^{\dagger} f_{ib}$$
$$\hat{H}_{emb}^i [\mathscr{D}_i,\Lambda_i^c] = \hat{H}_{loc}^i \left[c_{i\alpha}, c_{i\alpha}^{\dagger} \right] + \sum_{a=1}^{B\nu_i} \sum_{\alpha=1}^{\nu_i} \left(\left[\mathscr{D}_i \right]_{a\alpha} c_{i\alpha}^{\dagger} b_{ia} + \text{H.c.} \right) + \sum_{a,b=1}^{B\nu_i} \left[\lambda_i^c \right]_{ab} b_{ia}$$

 $a=1 \alpha=1$

Spectral properties

culated ground state $|\Psi_0\rangle$ s excited states $\xi_n^{\dagger} | \Psi_0 \rangle$ nd to a saddle point !

Ground state:

Excited states:

 $|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$

 $|\Psi_{G}^{n}\rangle = \mathscr{P}\xi_{n}^{\dagger}|\Psi_{0}\rangle$

Letter

PHYSICAL REVIEW B 67, 075103 (2003)

Landau-Gutzwiller quasiparticles

Jörg Bünemann Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom

> Florian Gebhard Fachbereich Physik, Philipps-Universität Marburg, D-35032 Marburg, Germany

Rüdiger Thul Abteilung Theorie, Hahn-Meitner-Institut Berlin, D-14109 Berlin, Germany PHYSICAL REVIEW B 96, 195126 (2017)

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW B 104, L081103 (2021)

Quantum embedding description of the Anderson lattice model with the ghost **Gutzwiller approximation**

Marius S. Frank[®],¹ Tsung-Han Lee[®],² Gargee Bhattacharyya[®],¹ Pak Ki Henry Tsang,³ Victor L. Quito[®],^{4,3} Vladimir Dobrosavljević,³ Ove Christiansen[®],⁵ and Nicola Lanatà[®],^{6,*}

Spectral properties

$A_{i\alpha,j\beta}(\omega) = \langle \Psi_G | c_{i\alpha} \delta(\omega - \hat{H}) c_{i\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{i\beta}^{\dagger} \delta(\omega + \hat{H}) c_{i\alpha}^{\dagger} | \Psi_G \rangle$

Emergent Bloch excitations in Mott matter

PHYSICAL REVIEW B 108, 245147 (2023)

Accuracy of ghost-rotationally-invariant slave-boson theory for multiorbital Hubbard models and realistic materials

Tsung-Han Lee⁽¹⁾,^{1,2,*} Corey Melnick,³ Ran Adler,¹ Nicola Lanatà⁽¹⁾,^{4,5} and Gabriel Kotliar^{1,3}

Ground state: $|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$ Excited states: $|\Psi_G^n\rangle = \mathscr{P}\xi_n^{\dagger}|\Psi_0\rangle$ $A_{i\alpha,j\beta}(\omega) = \langle \Psi_G | c_{i\alpha}^{\dagger} \delta(\omega - \hat{H}) c_{i\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{i\beta}^{\dagger} \delta(\omega + \hat{H}) c_{i\alpha}^{\dagger} | \Psi_G \rangle$

Spectral properties

 $\mathscr{G}(\omega) = \int_{-\infty}^{\infty} d\epsilon \, \frac{A(\epsilon)}{\omega - \epsilon} \simeq \mathscr{R}^{\dagger} \frac{1}{\omega - [\mathscr{R}t\mathscr{R}^{\dagger} + \lambda]} \mathscr{R} =: \frac{1}{\omega - t_{loc} - \Sigma(\omega)}$

Ground state: $|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$ $|\Psi_{G}^{n}\rangle = \mathscr{P}\xi_{n}^{\dagger}|\Psi_{0}\rangle$ Excited states: $A_{i\alpha,j\beta}(\omega) = \langle \Psi_G | c_{i\alpha}^{\dagger} \delta(\omega - \hat{H}) c_{i\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{i\beta}^{\dagger} \delta(\omega + \hat{H}) c_{i\alpha}^{\dagger} | \Psi_G \rangle$

$[\Sigma_i(\omega)]_{\alpha\beta} = [a_i]_{\alpha\beta} + 2$

Spectral properties

 $b_{in} \alpha \beta$ $\omega + i0^+ - p_n$

Supplemental topic 2: Time-dependent gGA

Our goal is to extremize w.r.t. $\{\Lambda_i\}, |\Psi_0\rangle$:

PRL 105, 076401 (2010)

PHYSICAL REVIEW LETTERS

Time-Dependent Mean Field Theory for Quench Dynamics in Correlated Electron Systems

Marco Schiró¹ and Michele Fabrizio^{1,2}

Time-dependent gGA

$S = \int_{t_{i}}^{t_{f}} dt \left\langle \Psi_{G}(t) \left| i\partial_{t} - \hat{H} \right| \Psi_{G}(t) \right\rangle$

week ending 13 AUGUST 2010

Letter

PHYSICAL REVIEW RESEARCH 5, L032023 (2023)

Time-dependent ghost Gutzwiller nonequilibrium dynamics

Daniele Guerci¹,¹ Massimo Capone,^{2,3} and Nicola Lanatà^{4,1,*}

 $\hat{H} = \frac{U}{2} \sum_{i} (\hat{n}_i - 1)^2 - J \sum_{\langle i,j \rangle} \sum_{\sigma=\uparrow,\downarrow} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.})$ $\mathcal{L} = \frac{1}{\mathcal{N}} \langle \Psi_0 | i \partial_t - \hat{H}_{qp} | \Psi_0 \rangle + \langle \Phi | i \partial_t - \hat{H}_{emb} | \Phi \rangle$ + $\sum_{\sigma=\uparrow,\downarrow a,b=1}^{B} \Lambda^{c}_{ab} \Delta_{ab}$ + $\sum_{ca} \sum_{a}^{B} \left(\mathcal{D}_{a} \mathcal{R}_{c} [\Delta(1-\Delta)]_{ca}^{\frac{1}{2}} + \text{c.c.} \right)$ $\sigma = \uparrow, \downarrow c, a = 1$

 $\hat{H} = \frac{U}{2} \sum (\hat{n}_i - 1)^2 - J \sum \sum (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.})$ $\langle i,j \rangle \ \sigma = \uparrow,\downarrow$

Daniele Guerci¹, Massimo Capone,^{2,3} and Nicola Lanatà^{4,1,*}

Martin Eckstein,¹ Marcus Kollar,¹ and Philipp Werner²

Supplemental topic 3: DFT+gGA

DFT+gGA

$$\begin{split} \mathcal{L}_{N}^{\text{DFT+gRISB}} \big[\rho(\mathbf{r}), \mathcal{J}(\mathbf{r}), \mu, V_{i}^{0}, N_{i}^{0} \big] &= \mathcal{L}_{\text{gRISB}} \big[\mathcal{J}(\mathbf{r}), \mu \big] \\ &- \int d\mathbf{r} \, \rho(\mathbf{r}) \mathcal{J}(\mathbf{r}) + E_{\text{Hxc}}[\rho(\mathbf{r})] + E_{\text{ion-ion}} + E_{\text{ion}}[\rho(\mathbf{r})] \\ &+ \sum_{i} E_{\text{dc}}^{i} \left[N_{i}^{0} \right] - \sum_{i} V_{i}^{0} N_{i}^{0} + \mu N \end{split}$$

DFT+gGA

$$\begin{split} \mathcal{J}(\mathbf{r}) &= \frac{\delta H_{\mathrm{Hxc}}^{\mathrm{LDA}}\left[\rho(\mathbf{r})\right]}{\delta\rho(\mathbf{r})} + \frac{\delta E_{\mathrm{ion}}\left[\rho(\mathbf{r})\right]}{\delta\rho(\mathbf{r})},\\ &\frac{1}{\mathcal{N}}\sum_{\mathbf{k}}\langle f_{\mathbf{k}ia}^{\dagger}f_{\mathbf{k}ib}\rangle_{0} = \left[\Delta_{i}\right]_{ab},\\ \rho(\mathbf{r}) &= \langle \hat{\Psi}_{u}^{\dagger}(\mathbf{r})\hat{\Psi}_{u}(\mathbf{r})\rangle_{0} + \langle \hat{\Psi}_{c}^{\dagger}(\mathbf{r})\hat{\Psi}_{c}(\mathbf{r})\rangle_{0} + \left(\langle \hat{\Psi}_{c}^{\dagger}(\mathbf{r})\hat{\Psi}_{u}(\mathbf{r})\rangle_{0} + \mathrm{H.c.}\rangle\right)\\ &+ \frac{1}{\mathcal{N}}\sum_{i}\sum_{\mathbf{k}}\sum_{\alpha\beta}\phi_{\mathbf{k}i\alpha}^{*}(\mathbf{r})\left(\langle\Phi_{i}|c_{i\alpha}^{\dagger}c_{i\beta}|\Phi_{i}\rangle - \sum_{ab}\left[R_{i}^{\dagger}\right]_{\alpha a}\left[\Delta_{i}\right]_{ab}\left[R_{i}\right]_{b\beta}\right)\phi_{\mathbf{k}i\beta}(\mathbf{r}),\\ \int dx\frac{1}{\mathcal{N}}\sum_{\mathbf{k}}\sum_{b}\sum_{i'}\phi_{\mathbf{k}i\alpha}^{*}(x)\hat{P}\left[-\nabla^{2}+J(\hat{x})-\mu\right]\hat{P}\phi_{\mathbf{k}i'\beta}(x)\left[R_{i}^{\dagger}\right]_{\beta b}\langle f_{\mathbf{k}ia}^{\dagger}f_{\mathbf{k}i'b}\rangle_{0}\\ &+ \int dx\frac{1}{\mathcal{N}}\sum_{\mathbf{k}}\phi_{\mathbf{k}i\alpha}^{*}(x)\hat{P}\left[-\nabla^{2}+J(\hat{x})\right]\hat{P}\langle f_{\mathbf{k}ia}^{\dagger}\hat{\Psi}_{u}(x)\rangle_{T} = \sum_{c}\left[D_{i}\right]_{c\alpha}\left[\Delta_{i}(1-\Delta_{i})\right]_{ac}^{\frac{1}{2}},\\ \int dx\left[\langle\hat{\Psi}_{u}^{\dagger}(x)\hat{\Psi}_{u}(x)\rangle_{0} + \langle\hat{\Psi}_{c}^{\dagger}(x)\hat{\Psi}_{c}(x)\rangle_{0}\right] = N + \sum_{i}m_{i},\\ \sum_{cd\alpha}\frac{\partial}{\partial d_{i,s}}\left(\left[\Delta_{i}(1-\Delta_{i})\right]_{cd}^{\frac{1}{2}}\left[D_{i}\right]_{d\alpha}\left[R_{i}\right]_{c\alpha} + \mathrm{c.c.}\right) + l_{i,s} + l_{i,s}^{c} = 0,\\ \hat{H}_{i}^{\mathrm{emb}}|\Phi_{i}\rangle = E_{i}^{c}|\Phi_{i}\rangle,\\ \langle\Phi_{i}|c_{i\alpha}^{\dagger}b_{ia}|\Phi_{i}\rangle - \sum_{c}\left[\Delta_{i}(1-\Delta_{i})\right]_{ac}^{\frac{1}{2}}\left[R_{i}\right]_{c\alpha} = 0,\\ \langle\Phi_{i}|b_{ib}b_{ia}^{\dagger}|\Phi_{i}\rangle - \left[\Delta_{i}\right]_{ab} = 0, \end{split}$$

$$\hat{\Psi}_{u}(x) = \left[\hat{I} - \sum_{\mathbf{k}i\alpha} |\phi_{\mathbf{k}i\alpha}\rangle\langle\phi_{\mathbf{k}i\alpha}|\right]\hat{\Psi}(x)$$
$$\hat{\Psi}_{c}(x) = \sum_{\mathbf{k}ia} f_{\mathbf{k}ia} \sum_{\alpha} [R_{i}^{\dagger}]_{\alpha a} \phi_{\mathbf{k}i\alpha}(x),$$

