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heff(t)
DMFT

i j = i

the self-energy is local !!

DMFT
=

self-consistently adjusted
Anderson Impurity Model (AIM)

Σ(ω)

è local, but all orders included!! è non perturbative in U!! 

= �ij , ⌃(~k,!) = ⌃(!)
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v A.Georges & G. Kotliar,  PRB  (1992)

DMFT in a nutshell

high connectivity/dimensions
v W. Metzner & D. Vollahardt, PRL (1989)



auxiliary
AIM 

★  starting point :   

GAIM(w)
Inverse Dyson eq.
     of the AIM SAIM(w)

Dyson eq.
of the lattice Gi j

Gii = GAIM

DMFT algorithm:  Self-consistency at the 1P level

and … at a 2P level ?   

+ …+

Χ(q,ω)
physical resp. 

=
Χ0(q,ω)

bubble term. 

𝜞2PI
AIM (ω,ν,ν’) in d = ∞:  fully local as SAIM 

vertex corrections



1P- and 2P-self-consistency of DMFT  

★  1P-level :   Gii = GAIM

(DMFT self-consistency)
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~k

G(~k, ⌫) = GAIM (⌫) always verified in 

DMFT calculations
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~q

�(~q,!) = �AIM (!)★  2P-level :   𝜞ijkl =𝜞 iiii 𝝳ij 𝝳ik𝝳il = 𝜞AIM
2PI2PI 2PI

d = ∞
DMFT is exact

✓
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in d = 1 : �(~q,!) ⌘ �AIM (!) 8 ~q (except special momenta)

v A. Georges et al. RMP (1996)



1P- and 2P-self-consistency of DMFT  

★  1P-level :   Gij = GAIM

(DMFT self-consistency)
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~k

G(~k, ⌫) = GAIM (⌫) always verified in 

DMFT calculations
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~q

�(~q,!) = �AIM (!)★  2P-level :   𝜞ijkl = 𝜞 iiii 𝝳ij 𝝳ik𝝳il = 𝜞AIM
2PI2PI 2PI

d < ∞
DMFT is an approx.

✓
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in d = 1 : �(~q,!) ⌘ �AIM (!) 8 ~q (except special momenta)✘
v A. Georges et al. RMP (1996); A. Katanin et al. PRB (2009); G. Rohringer & AT, PRB (2016);  L. Del Re & AT, PRB  (2021) 



Dimensionality:

d = ∞

From ∞ dimensions to ...  „reality“ !
Systems: Spatial correlations

beyond DMFT:

mathematical
idealization

(DMFT exact!)

d = 3 bulk materials

d = 2
layered compounds:

2D-networks,
adatoms

heterostructures

None

in some
conditions

quite strong!!



Dimensionality:

d = ∞

d = 3

d = 2

From ∞ dimensions to ...  „reality“ !
Systems: Spatial correlations

beyond DMFT:

mathematical
idealization

(DMFT exact!)

bulk materials

layered compounds:
2D-networks,

adatoms
heterostructures

None

in some
conditions

quite strong!!

d = 3

d = 2

most common case:
bulk materials

in some
conditions

quite strong!!

1. Cellular-DMFT  
      (C-DMFT: cluster in real space)

2. Dynamical Cluster Approx. 
       (DCA: cluster in k-space)         

[⌘ Review:  “Quantum Cluster Theories”:  Th. Maier,  et al., RMP 2006] 

★ cluster extensions [⌘ Kotliar et al.  PRL 2001;  Huscroft,  Jarrell et al.  PRL 2001] 
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Diagrammatic extensions of DMFT

★  Dual Fermion (DF) & Dual Bosons (DB)
       [⌘ Rubtsov, Lichtenstein …, PRB (2008);  Ann. Phys (2012)]

★  Dynamical Vertex Approximation (D𝜞A) 
      [⌘ AT, Katanin, Held, PRB (2007)]

★ 1Particle Irreducible approach 
      [⌘ Rohringer, AT et al., PRB (2013)]

★ DMF2RG 
     [⌘ Taranto, …,& AT; PRL (2014);  Vilardi , Taranto & Metzner, PRB (2019)]

★  TRILEX, QUADRILEX 
      [⌘ Ayral & Parcollet, PRB 2015; PRB (2016)]
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Common feature:  two-step procedure !

# step 1:   extract a local vertex
from DMFT/EDMFT(AIM)

# step 2:  build upon that the diagrammatic expansion
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2P-Green‘s function:  

vertex functions:  
2P-analogous of the self-energy

è computable for AIM  
single band: ED & NRG [Kugler et al. PRX, (2021)]
general multi-band case: CTQMC [TRIQS, w2dynamics, ALPS, ….]

= + F+

=  Γ
(fRG notation)

= γ4
(DF notation)

Full vertex
(scattering amplitude)

2P-Feynman diagrams: (local) Green’s & vertex functions

the lowest order :

U

<latexit sha1_base64="1newYvh2kd66GoRZ1Ususkrf/f8="></latexit>

G(2)
�1,�2,�3,�4

(⌧1, ⌧2, ⌧3, 0) = hĉ�1(⌧1)ĉ
†
�2
(⌧2)ĉ�3(⌧3)ĉ

†
�4
(0)i

Its Fourier Transform:  
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G(2)
�1�2�3�4

(!, ⌫, ⌫0)=

Z �

0
d⌧1 d⌧2 d⌧3 ei⌫⌧1e�i(⌫+!)⌧2ei(⌫

0+!)⌧3 G(2)
�1�2�3�4

(⌧1, ⌧2, ⌧3, 0)

G(2)

Independent 2P-propagation

U



2P-irreducibility  (2PI)
1)  parquet equation:

2)  Bethe-Salpeter equation (BSE):

Γph

F
irr

e.g., in the ph transverse ( ph ) channel:   F    =  Γph +   Φph

irr

Mr. Parquet ? truly from 
 parquet floor!



Types of approximations:

2P
-i

rr
ed

uc
ib

ili
ty

*) LOWEST ORDER  (STATIC)  APPROXIMATION: U



Frequency dependence: an overview

νn

ν‘
n

Colour-density
plot

red:   F > U

(white:  F = U) 

blue:  F < U 
F

ν + ω ν‘ + ω

ν‘ν

= F(ν,ν‘,ω=0)



full vertex F (1PI)

Frequency dependence: an overview

irreducible vertex Γdirr

(2PI in one channel)

fully irreducible 𝜦 (2PI)

density magnetic



full vertex F (1PI)

Frequency dependence: an overview

irreducible vertex Γcirr

(2PI in one channel)

fully irreducible 𝜦 (2PI)

density magnetic

Take-home-message:

# 1)  the more 2PI, the easier the high-frequency
dependence

But ...  “there is no free lunch“ :

# 2)  the more 2PI, the strongest the low-frequency
dependence

G. Rohringer,  A. Valli, &  AT,  PRB (2012);   T.  Schäfer, ...  &  AT,  PRL (2013)        
See also:  J. Kunes, PRB (2011);  A. Dolfen, PhD-Thesis (2009); D. Luitz,  PhD-Thesis (2013);                            
H. Hafermann  PRB (2014); M. Kinza PRB (2014);  N. Wentzell,G. Li, PRB (2020)



full vertex Γ (1PI)

Frequency dependence: an overview

irreducible vertex Γcirr

(2PI in one channel)

fully irreducible 𝜦 (2PI)

density magnetic

for U < ½ UMIT

Γc
irr



Relation to the physics?
• generalized local charge susceptibility for iΩ=0 

𝜒#
$%&' = (

)!%**+

The fingerprint of the Kondo regime is, thus, the onionlike
frequency structure of χ̃νν

0
, which is clearly recognizable in

the rightmost central panel of Fig. 1: (i) a high-frequency
perturbative asymptotic, (ii) a local moment driven struc-
ture (with suppressed diagonal) at intermediate frequencies,
(iii) an inner core [with a similar sign structure as (i)]
induced by the Kondo screening. A quick glance at the sign
structure of χ̃νν

0
therefore allows for an immediate under-

standing of the underlying physics. This nicely illustrates
the balanced competition in the charge sector between the
freezing effects of the local moment and the defreezing
effects of its low-energy screening, which characterizes the
Kondo regime.
Note, that the onionlike structure is also found for other

values of U, as well as in other models [54], discussed
below.

How to extract the Kondo temperature.—The behavior
described above is also reflected in the temperature
evolution of the lowest frequency entries of χ̃νν

0
:

the diagonal χ̃D ¼ T2χ̃πT;πT and the off-diagonal
χ̃O ¼ T2χ̃πT;−πT , shown in the lowest panel of Fig. 1.
We can readily trace the sign changes marking the three
regimes discussed above, associating the (negative) mini-
mum of χ̃D with the temperature at which the strongest
local moment effects are observed. The screening induced
enhancement of χ̃D at lower temperatures has remarkable
consequences: We find that crossing the Kondo tempera-
ture, as defined in a standard way from the behavior
of the static magnetic response of the system [54]
(TK ¼ 1=65 ≈ 0.015 at U ¼ 5.75 for the AIM), matches
with high accuracy the equality of χ̃D and χ̃O observed
at low-T (see inset of Fig. 1, marked by black triangle).

FIG. 1. Comparison of the Matsubara frequency structure of T2χ̃νν
0ðΩ ¼ 0Þ for the HA (top row) and the AIM (center row) for

U ¼ 5.75 [84] and different temperatures. The maximal Matsubara index is kept fixed for all temperatures (the labels are hidden to
ensure better readability). Black and white squares mark the main frequency structures, as described in the text. Lower panel:
Temperature evolution of the lowest Matsubara frequency elements of T2χ̃νν

0ðΩ ¼ 0Þ: χ̃D ¼ T2χ̃πT;πT (violet) and χ̃O ¼ T2χ̃πT;−πT

(green). They cross at Thigh at the divergence of Γ (red, I), and at low-temperatures at T ≃ TK (black triangle), see also the inset showing
a zoom around TK (vertical blue line). The arrows with and without the surrounding cloud sketch the local moment and the Kondo
screened regime, respectively.

PHYSICAL REVIEW LETTERS 126, 056403 (2021)

056403-3

➜ red = positive values

➜ blue = negative values

v P. Chalupa et al., PRL (2021); S. Adler., …, & AT,  SciPost Phys. (2024)  



Anderson Impurity Model
• wide-band limit, half-filling

     
    

local magnetic moment Kondo screening

Main physical ingredients:

V=0 : Atomic Limit (AL)

T  <  U: 

Curie behavior:
𝟀m ∝ 1/T ⇔  T𝟀m = const. 

T  ~  TK << U: 



Physical response of the AIM • w2dynamics – CT-HYB

charge response

M.Wallerberger, et.al, CPC 235, 388 (2019) 

𝜒#
$%&' = (
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v P. Chalupa, T. Schäfer, M. Reitner, D. Springer, S. Andergassen, and A.T., PRL  126 056403 (2021)

𝜒,
$%&' = (

)!%**+
𝜒,**+

magnetic response



Physical response of AL & AIM • w2dynamics – CT-HYB

charge response

M.Wallerberger, et.al, CPC 235, 388 (2019) 

𝜒#
$%&' = (

)!%**+
𝜒#**+

v P. Chalupa, T. Schäfer, M. Reitner, D. Springer, S. Andergassen, and AT., PRL  126 056403 (2021)

𝜒,
$%&' = (

)!%**+
𝜒,**+

magnetic response



1.Step: Non interacting case/bubble term

• 2 step

𝜈

𝜈′

∝ 𝛽𝐺!(𝑖𝜈)𝛿""#



2.Step: weak vs. strong-coupling

𝑅𝑃𝐴
	(𝑝𝑒𝑟𝑡. )

𝐴𝐿	
(strong − coupl. )

~𝑈

e.g.:  intermediate  temperature region ( TK < T <<  U) 
𝑇!

v P. Chalupa, T. Schäfer, M. Reitner, D. Springer, S. Andergassen, and A.T., PRL  126 056403 (2021)



𝑅𝑃𝐴 𝐴𝐿

Negative ``images’’
one of the other
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𝑅𝑃𝐴
  (weak-coupling)

𝐴𝐿
(strong-coupling)

positive diagonal
dominates

➜ all eigevalues 𝞴 > 0

negative diagonal
dominates

➜ low-freq. eigevalues 𝞴 < 0

𝞴 = 0 

𝜞2PI = ∞

from weak- to strong-coupling

2PI



Phase diagram of the Hubbard model

PM
PI

(Mott insulator)

crossover

-D         D 

n=1 (half-filling)DOS:

MIT data: N. Bluemer, PhD Thesis

𝛍

4

the AIM [13], where no Mott MIT takes place, and as-
cribed [8, 13, 21, 27] them to suppressive e↵ects of the
on-site/impurity charge fluctuation triggered by the for-
mation of a local magnetic moment.

Hence, in order to clarify the nature of the relation
linking the Mott MIT and the occurrence of divergences
in the irreducible vertex functions of the charge sector, it
is necessary to extend the DMFT studies performed hith-
erto to the most challenging parameter regime, namely,
the coexistence region across the MIT, which represents
the central goal of the present work.

D. Methods

The DMFT calculations of the generalized local charge
susceptibility have been performed by using a continuous-
time quantum Monte Carlo (CT-QMC) solver [40] to
sample the one and two-particle Green’s functions in
Eq. (3) for the auxiliary AIM of the corresponding self-
consistent DMFT solutions. Specifically, we used the CT-
QMC solver of the w2dynamics package [41, 42]. Fur-
ther technical details about the numerical calculations
are shortly reported in Appendix A. Here, we want to
concisely recall, how the PM and PI DMFT-solutions
in the coexistence region are obtained: Starting from
outside of the coexistence region, the interaction U is
changed step-by-step for a fixed temperature T , whereby
the previously converged DMFT calculations are used
as a starting point of the new self-consistent DMFT cy-
cle (as schematically illustrated by the two arrows in
the leftmost panel of Fig. 1). By entering the coexis-
tence/hysteresis region, the variation-steps in U must be
small (e.g. O(0.1)�O(0.01)), in order to allow for conver-
gence to di↵erent meta-stable DMFT solutions, depend-
ing on the initial condition used. In this way two di↵erent
solutions can be stabilized, at a given temperature T , in
the interval Uc1(T )<U<Uc2(T ), the PM (PI) one be-
ing obtained along the path from the left to the right
Uc1(T )!Uc2(T ) (the right to the left Uc2(T )!Uc1(T )).
For each PM or PI converged DMFT-solution obtained in
the coexistence region, the corresponding on-site general-
ized charge susceptibility is then computed as explained
above, and Fourier transformed in Matsubara frequen-
cies. The diagonalization of their corresponding matrix
representation in the fermionic Matsubara frequencies al-
lows to determine the number of negative eigenvalues,
N�<0, which, as discussed in Sec. II B, corresponds to
the number of crossed �1

c
-lines and can then be used to

approximate the �1
c
-lines (see Appendix B for further

details) in the region of the phase-diagram close to the
Mott MIT.

III. RESULTS

A. Metallic coexistence region

Our results for the PM solutions of the MIT coexis-
tence region are shown in the upper panel of Fig. 3. Here
the coexistence region is indicated as a blue framed and

FIG. 3. Phase diagrams of the MIT with PM solution in the
coexistence region (blue-shaded area) for the Hubbard model
(HM) on the Bethe lattice. Uc (blue), taken from Ref. [43],
denotes the thermodynamic transition. Upper panel: Coexis-
tence region with phase points of performed DMFT calcula-
tions, where green diamonds correspond to a metallic solution
and red squares to an insulating one. The numbers next to
markers areN�<0 and the background of the points within the
coexistence region shows an interpolating color scale of N�<0

for the metallic solution. Lower panel: Same phase diagram
as the upper panel, but showing the distinct �1

c -lines approx-
imated from the data of the phase points (see Appendix B).
Here, nHM indicates the number of crossed �1

c -lines of the
Hubbard model, coming from U=0. Dashed red and orange
lines (in both panels) mark the �1

c -lines of the Hubbard atom
(HA) according to [9] as reference, where nHA is the number
of crossed lines coming from U=0.

-many 2PI-vertex 
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II. Multivaluedness of LW functional

I. Approaches based on 2PI vertices

Algorithmic
challenges

parquet-based methods

dynamical vertex approximation (D𝚪A)

QUADRILEX
[A. Toschi et al., PRB (2007); O. Gunnarsson et al., PRB (2016)
T. Ayral et al. , PRB (2016); G. Rohringer et al. , PRB (2018); ….]

iterative/self-consistent (=``bold’’)
Diagrammatic resummation

Diagrammatic Monte Carlo

Nested Cluster Schemes

[E. Kozik et al., PRL (2015); A.Stan et al., NJP (2015); 
R. Rossi et al. , PRB (2015);  J. Vucicevic, et al. PRB (2018), ….]
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local moment

suppression

of charge fluct.   

2PI-vertex    
divergences

The fingerprint of the Kondo regime is, thus, the onionlike
frequency structure of χ̃νν

0
, which is clearly recognizable in

the rightmost central panel of Fig. 1: (i) a high-frequency
perturbative asymptotic, (ii) a local moment driven struc-
ture (with suppressed diagonal) at intermediate frequencies,
(iii) an inner core [with a similar sign structure as (i)]
induced by the Kondo screening. A quick glance at the sign
structure of χ̃νν

0
therefore allows for an immediate under-

standing of the underlying physics. This nicely illustrates
the balanced competition in the charge sector between the
freezing effects of the local moment and the defreezing
effects of its low-energy screening, which characterizes the
Kondo regime.
Note, that the onionlike structure is also found for other

values of U, as well as in other models [54], discussed
below.

How to extract the Kondo temperature.—The behavior
described above is also reflected in the temperature
evolution of the lowest frequency entries of χ̃νν

0
:

the diagonal χ̃D ¼ T2χ̃πT;πT and the off-diagonal
χ̃O ¼ T2χ̃πT;−πT , shown in the lowest panel of Fig. 1.
We can readily trace the sign changes marking the three
regimes discussed above, associating the (negative) mini-
mum of χ̃D with the temperature at which the strongest
local moment effects are observed. The screening induced
enhancement of χ̃D at lower temperatures has remarkable
consequences: We find that crossing the Kondo tempera-
ture, as defined in a standard way from the behavior
of the static magnetic response of the system [54]
(TK ¼ 1=65 ≈ 0.015 at U ¼ 5.75 for the AIM), matches
with high accuracy the equality of χ̃D and χ̃O observed
at low-T (see inset of Fig. 1, marked by black triangle).

FIG. 1. Comparison of the Matsubara frequency structure of T2χ̃νν
0ðΩ ¼ 0Þ for the HA (top row) and the AIM (center row) for

U ¼ 5.75 [84] and different temperatures. The maximal Matsubara index is kept fixed for all temperatures (the labels are hidden to
ensure better readability). Black and white squares mark the main frequency structures, as described in the text. Lower panel:
Temperature evolution of the lowest Matsubara frequency elements of T2χ̃νν

0ðΩ ¼ 0Þ: χ̃D ¼ T2χ̃πT;πT (violet) and χ̃O ¼ T2χ̃πT;−πT

(green). They cross at Thigh at the divergence of Γ (red, I), and at low-temperatures at T ≃ TK (black triangle), see also the inset showing
a zoom around TK (vertical blue line). The arrows with and without the surrounding cloud sketch the local moment and the Kondo
screened regime, respectively.
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§   a coherent picture:

T. SCHÄFER et al. PHYSICAL REVIEW B 94, 235108 (2016)
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FIG. 9. Upper panel: Matsubara frequency density plot of the
full (local) scattering amplitude F νν′("=0) of the DMFT solution of
the Hubbard model, on both sides of the first divergence (red) line of
Fig. 10 at T = 0.1. Middle/lower panels: The same for 2PI functions
in the charge #νν′("=0)

c and in all channels $νν′("=0), respectively. Note
that, for a better readability, in all cases the bare interaction term U

has been subtracted.

are evidently not the only ones where a vertex divergence takes
place. By approaching the MIT from the metallic phase, one
observes several eigenvalues of the generalized charge and
particle-particle susceptibilities progressively passing through
zero (“singular” eigenvalues) at certain values of (T̃ ,Ũ ). These
determine the corresponding divergences of the irreducible
vertices as well as a sign change of their low-frequency
structure on the two sides of the divergence line [24]. Their
positions in the phase diagram are marked—in the usual
notation—by red and orange lines. By moving further into
the nonperturbative parameter regime, because of the high
density of divergence lines, the extraction of the irreducible
vertex functions becomes more challenging, and we could
determine with sufficient numerical accuracy only the first
seven divergences of #c and #pp. However, by exploiting
the one-to-one large-U correspondence of the divergence
lines in the Hubbard phase diagram with the infinitely many
divergences of the exact atomic limit solution (see Sec. IV

and the rightmost scale in Fig. 10), we can infer a presence of
an infinite number of (red and orange) divergence lines over
the whole phase diagram. Finally, we should also remark that
the irreducible vertex in the (predominant) spin channel #νν ′"

s
does not exhibit any low-frequency divergences in the whole
parameter region considered.

As for the low-temperature regime (β ! 100), the numeri-
cal treatment becomes significantly harder. Hence, in addition
to HF-QMC, we have performed CT-QMC calculations in
the hybridization expansion [50,73,74]. The latter does not
suffer from the finite-size problems, neither the ones of ED
(bath discretization) nor the ones of HF-QMC (Trotter time
discretization), and can more easily access lower temperatures.
Let us however note that if a qualitative change in the shape of
the divergence lines would take place at exponentially small
temperature scales, even the CT-QMC analysis might miss
it. The presence of an exponentially small temperature scale
characterizes for instance the physics of some multiorbital
models [75], for which the Fermi-liquid coherence temper-
ature [76] could not be reached by CT-QMC calculations.
Bearing these limitations in mind, the results for the first two
divergence lines are compatible with a T → 0 extrapolation of
Ũ (T = 0) ≈ 1.45 and ≈1.95, respectively (for details about
the low-temperature data see Appendix B and Figs. 12 and 13
therein): In both cases Ũ < Uc2 ∼ 3 of the MIT, and, therefore,
the line terminates well inside the metallic regime, where a well
defined, coherent quasiparticle peak is visible in the DMFT
spectral functions.

Looking at our divergence results for the whole phase
diagram, one will—first of all—find a confirmation for the
heuristic interpretation proposed in Ref. [24] of the irre-
ducible vertex singularities as nonperturbative precursors of
the Mott-Hubbard transition, linked [38] to a gradual sup-
pression of the physical charge susceptibility and the opening
of a spectral gap when approaching the MIT. Besides this
rather generic consideration, however, it remains a problem
to gain deeper understanding of the origin of this impressive
manifestation of the breakdown of perturbation theory around
the MIT, of its interrelation with other theoretical aspects of
the nonperturbative physics, and—if they exist—of its effects
in observable quantities. To this aim, in the next subsection
we will proceed by performing a detailed comparison of the
Hubbard model data of Fig. 10 (right panel) with those of
simplified models reported in Secs. III and IV.

B. Interpretation of the results

Despite the high degree of complexity displayed by the
many vertex divergence lines surrounding the MIT of the
Hubbard model (Fig. 10, right panel), these can be classified—
in a large portion of the phase diagram—in a similar, simple
framework like that of the disordered/atomic-limit model. In
particular, by comparing our results for the Hubbard model
(Fig. 10, right panel) with those of the disordered models
(Fig. 10, left panel) and of the atomic limit (Fig. 10, rightmost
scale), we note immediately a qualitatively similar behavior
of both (red and orange) kinds of divergence lines in all three
cases in the region of large U and T . This corresponds to
the parameter region, where the relation between Ũ and T̃
is approximately linear in the Hubbard model. On the other

235108-16
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 DMFT: all 1-particle irreducible diagrams (=self-energy) are LOCAL !! 

the self-energy becomes NON-LOCAL   

the dynamical vertex approximation (DΓA): a 2PI-based approach
AT,  A. Katanin, K. Held,  PRB (2007)  

See also:  PRB (2009),  PRL (2010),  PRL (2011),  PRB (2012), PRB (2015), …
Review: RMP (2018)

i j

 DΓA: all 2-particle irreducible diagrams (=vertices) are LOCAL !! 

𝜦2PI



An inspiring example : DCA calculations of k-dependent vertex functions

DCA,  2d-Hubbard model, U=4t, n=0.85, ν=ν‘=π/β, ω=0, s. Th. Maier et al.,  PRL (2006)

... of increasing 2P-irreducibility
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[3] David Sénéchal, P.-L. Lavertu, M.-A. Marois, and
A.-M. S. Tremblay, Phys. Rev. Lett. 94, 156404 (2005).

[4] S. S. Kancharla, M. Civelli, M. Capone, B. Kyung,
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former connects !νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑

k

Gν
kGν+ω

k+q , (3)

χνν ′ω
r,q = χνν ′ω

0,q −
∑

ν1ν2

χνν1ω
0,q (ν1ν2ω

r χν2ν
′ω

r,q , (4)

χω
r,q =

∑

νν ′

χνν ′ω
r,q , (5)

γ νω
r,q =

∑

ν ′

(
χνν ′ω

0,q

(
1 ± Uχω

r,q

))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + µ − εk − +ν]−1 is the DMFT lattice Green’s

function and +ν the local DMFT self-energy. (νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:

+λ,ν
k = Un

2
− U

∑

ωq

[
1 + 1

2
γ νω

d,q

(
1 − Uχλd ,ω

d,q

)

− 3
2
γ νω

m,q

(
1 + Uχλm,ω

m,q

)
−

∑

ν ′

χν ′ω
0,q F νν ′ω

m

]
Gν+ω

k+q , (7)

where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as

1
2

∑

ωq

(
χλd,ω

d,q + χλm,ω
m,q

) != n
2

(
1 − n

2

)
, (8a)
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d,q − χλm,ω
m,q
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n2

4
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E (2)
pot

!=
∑

νk

Gλ,ν
k +λ,ν

k

︸ ︷︷ ︸
E (1)

pot

, (8b)

where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1
χr

+ λr

)−1

. (9)

A previous version of ladder D(A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D(A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D(A will
be denoted with lD(Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm %= 0, while λd = 0. lD(Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm %= 0.

The local DMFT self-energy +ν and vertex functions (νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex (νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D(A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].

205101-3

To be determined 
by enforcing TPSC/parquet-like sum rules 

Moriya
 

‘’mass”-
term 

correction

CONSISTENCY OF POTENTIAL ENERGY IN THE … PHYSICAL REVIEW B 106, 205101 (2022)

former connects !νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑

k

Gν
kGν+ω

k+q , (3)

χνν ′ω
r,q = χνν ′ω

0,q −
∑
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χω
r,q =

∑
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γ νω
r,q =

∑

ν ′

(
χνν ′ω

0,q

(
1 ± Uχω

r,q

))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + µ − εk − +ν]−1 is the DMFT lattice Green’s

function and +ν the local DMFT self-energy. (νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:

+λ,ν
k = Un

2
− U

∑

ωq

[
1 + 1

2
γ νω

d,q

(
1 − Uχλd ,ω
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)

− 3
2
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(
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m,q

)
−

∑

ν ′

χν ′ω
0,q F νν ′ω

m

]
Gν+ω

k+q , (7)

where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as

1
2

∑

ωq

(
χλd,ω

d,q + χλm,ω
m,q

) != n
2

(
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2

)
, (8a)
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E (1)
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, (8b)

where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1
χr

+ λr

)−1

. (9)

A previous version of ladder D(A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D(A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D(A will
be denoted with lD(Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm %= 0, while λd = 0. lD(Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm %= 0.

The local DMFT self-energy +ν and vertex functions (νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex (νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D(A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].
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former connects !νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑

k
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k+q , (3)
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(
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))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + µ − εk − +ν]−1 is the DMFT lattice Green’s

function and +ν the local DMFT self-energy. (νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:

+λ,ν
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2
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−
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]
Gν+ω

k+q , (7)

where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as

1
2

∑
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χλd,ω

d,q + χλm,ω
m,q
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where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1
χr

+ λr

)−1

. (9)

A previous version of ladder D(A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D(A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D(A will
be denoted with lD(Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm %= 0, while λd = 0. lD(Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm %= 0.

The local DMFT self-energy +ν and vertex functions (νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex (νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D(A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].
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former connects !νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑

k

Gν
kGν+ω

k+q , (3)

χνν ′ω
r,q = χνν ′ω

0,q −
∑

ν1ν2

χνν1ω
0,q (ν1ν2ω

r χν2ν
′ω

r,q , (4)

χω
r,q =

∑

νν ′

χνν ′ω
r,q , (5)

γ νω
r,q =

∑

ν ′

(
χνν ′ω

0,q

(
1 ± Uχω

r,q

))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + µ − εk − +ν]−1 is the DMFT lattice Green’s

function and +ν the local DMFT self-energy. (νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:
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where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as
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where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1
χr

+ λr

)−1

. (9)

A previous version of ladder D(A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D(A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D(A will
be denoted with lD(Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm %= 0, while λd = 0. lD(Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm %= 0.

The local DMFT self-energy +ν and vertex functions (νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex (νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D(A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].
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former connects !νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑

k

Gν
kGν+ω

k+q , (3)

χνν ′ω
r,q = χνν ′ω

0,q −
∑

ν1ν2

χνν1ω
0,q (ν1ν2ω

r χν2ν
′ω

r,q , (4)

χω
r,q =

∑

νν ′

χνν ′ω
r,q , (5)

γ νω
r,q =

∑

ν ′

(
χνν ′ω

0,q

(
1 ± Uχω

r,q

))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + µ − εk − +ν]−1 is the DMFT lattice Green’s

function and +ν the local DMFT self-energy. (νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:

+λ,ν
k = Un

2
− U

∑

ωq

[
1 + 1

2
γ νω

d,q

(
1 − Uχλd ,ω

d,q

)

− 3
2
γ νω

m,q

(
1 + Uχλm,ω

m,q

)
−

∑

ν ′

χν ′ω
0,q F νν ′ω

m

]
Gν+ω

k+q , (7)

where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as

1
2

∑

ωq

(
χλd,ω

d,q + χλm,ω
m,q

) != n
2

(
1 − n

2

)
, (8a)

U
2

∑

ωq

(
χλd,ω

d,q − χλm,ω
m,q

)
+ U

n2

4
︸ ︷︷ ︸

E (2)
pot

!=
∑

νk

Gλ,ν
k +λ,ν

k

︸ ︷︷ ︸
E (1)

pot

, (8b)

where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1
χr

+ λr

)−1

. (9)

A previous version of ladder D(A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D(A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D(A will
be denoted with lD(Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm %= 0, while λd = 0. lD(Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm %= 0.

The local DMFT self-energy +ν and vertex functions (νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex (νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D(A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].
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FIG. 5. Inverse of the antiferromagnetic susceptibility χAF(T ) = χm(ω=0, q=!) as a function of the temperature T = 1
β

for U =1.25
(left) and U =2 (right) obtained by DMFT (orange circles), lD$Am (green hexagons) and lD$Adm (red squares).

range for U = 2, where TN is substantially larger than for
U = 1.25 (for lower values of U the critical regime is hardly
visible on our scales). In Ref. [56], it has been discussed,
that the lD$Am provides critical exponents consistent with the
spherical symmetric Kac model [57], where γ = 2, similar
as in TPSC [58]. On the other hand, when the susceptibility
bends away from the mean-field behavior, γ ≈ 1.4 as in the
Heisenberg model has been fitted numerically in an extended
temperature range [34]. Such an exponent has also been ob-
served in the DF approach [52], whereas that for the Falicov
Kimball model was consistent with the critical exponent of the
Ising model [59]. Let us point out that fitting the exponent of
a scaling function such as Eq. (11) is intrinsically difficult and
γ = 2 can be only achieved by including subleading terms in
the fit as has been shown in Refs. [56,60].

In any case, the determination of TN from numerical data is
stable, and its value depends only very weakly on changes
in γ [56]. We have, hence, fitted the results for χAF(T )
to the scaling function in Eq. (11) in order to obtain the
transition temperature TN for different interaction values U .
The transition curves TN(U ) for DMFT (orange circles), the
lD$Am (green hexagons), and lD$Adm (red squares) are de-
picted in Fig. 6 where also results obtained with other methods

FIG. 6. Phase diagram of the 3d half-filled Hubbard model on
a simple cubic lattice with nearest neighbor hopping. The curves
correspond to the transition temperature to the antiferromagnetically
ordered state obtained by the different methods (DF [52] and Di-
agMC [53]) indicated in the legend of the figure.

are shown for comparison. Overall, a reduction of TN obtained
by both versions of D$A with respect to the DMFT curve
can be observed. This is indeed the expected behavior as
mean-field theories (such as DMFT) typically overestimate
the transition temperature to an ordered state. This can be
attributed to the fact that nonlocal correlations, which are
included in D$A in an effective way by the λ corrections
but not in DMFT, destroy the order in an intermediate tem-
perature regime and predict a reduced TN. Remarkably, in the
weak to intermediate coupling region (U ∼1 to U ∼2) this
reduction is much more pronounced when only the renormal-
ization of the spin susceptibility through Eq. (8a) is taken
into account (green hexagons). This is a direct consequence
of the mechanism which has been discussed in Sec. III B for
the susceptibilities: The positive λd leads to a decrease of
the charge susceptibility χω

d,q in Eq. (8a) requiring a larger
spin susceptibility χω

m,q (corresponding to a smaller value of
λm with respect to the case where only the spin channel is
corrected). Consequently, the related antiferromagnetic spin
susceptibility χAF(T ) will diverge at a higher temperature T
in lD$Adm giving rise to a higher transition temperature TN
with respect to lD$Am .

For U ! 1, our numerical lD$Adm data for TN coincide
with the corresponding DMFT results. This means nonlocal
correlations do not reduce the transition temperature in this
parameter regime, which is indeed the expected behavior and
has been predicted by analytical considerations and numerical
simulations [51,61,62]. In fact, it was demonstrated that TN is
affected mainly by local particle-particle fluctuations (which
are of course already included in DMFT) in the weak cou-
pling region. In the intermediate coupling regime (U ∼1 to
U ∼2) we observe a reduction of TN in lD$Adm with respect
to DMFT which is in good agreement with dual fermion
(DF) [52] and diagrammatic Monte Carlo [53] results. This
is consistent with the fact that within the DF treatment of the
problem both the spin and the charge fluctuations are renor-
malized within a self-consistent update of the generalized
susceptibilities in the dual space [15] (although a consistency
of the potential energy has not been demonstrated in this
framework). Diagrammatic Monte Carlo calculations provide
(in principle) the exact solution of the problem. In the in-
termediate coupling region, they are in very good agreement
with our lD$Adm results which can therefore be considered
a more reliable method than lD$Am for the estimation of the
transition temperature in this parameter regime.
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𝝀-DΓA results in 3 dimensions: the spectral properties
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✔ phase diagram: one-band Hubbard model in d=3 (half-filling)
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Thus we obtain the non-interacting spectrum A(!,k)=
�(! � ⇠k); the FS remains intact. Contrary, the part
around the antinode [around k = (⇡, 0)], which is outside
of the AFZB, is coupled to filled states with nk+Q =
1. Consequently, the spectrum A(!,k) = �(! � ⇠k �
V) is shifted to energies above the Fermi level. Hence,
there is no FS for such momenta. Instead, a Luttinger
surface (LS) appears [70], defined by Gk(! = 0)=0 (i.e.,
with both real and imaginary part vanishing). Resolving
Eq. (3) for this condition yields ⇠k = ✏k�µ=(nk+Q�1)V,
which for � ! 1 becomes fulfilled close to the AFZB.

The result is a disconnected FS, or more precisely:
a transition of a FS into a LS at the AFZB. This in-
sight of an exactly solvable model is crucial to under-
stand Fermi arcs: It shows that Fermi surfaces do not
need to be connected, but can display a direct transi-
tion into Luttinger arcs, which are invisible to ARPES
experiments. The underlying combined surface (LS and
FS) defined by <Gk(! = 0)=0 remains continuous and
connected. However, it splits into Fermi arcs [poles of
=Gk(! = 0)] and Luttinger arcs [zeros of =Gk(! = 0)],
see also SM [66]. The location of the Fermi arcs in
our model is qualitatively consistent with ARPES ex-
periments in cuprates [4–14]. Further, the evolution of
the FS/LS as a function of doping is directly reflected
in the corresponding low-T behavior of thermodynamic
properties, such as the electronic specific heat for T ! 0
(see SM [66]).

For the electron-doped case (II), the scenario gets re-
versed w.r.t. to the AFZB, see panels (a) and (c) of Fig. 2.
This again agrees with the experimental observation in
cuprates [71–73].

It is also worth stressing here that the close prox-
imity of Luttinger and Fermi arcs, which character-
izes the pseudogap regimes (II) and (V), may lead
one to suspect a mismatch in the Luttinger count
[74] n =

P
k� ⇥(<Gk(! = 0)), similar to the one

reported in Mott insulators [75]. In fact, for mo-
menta close to the Luttinger surface one does find that
1
2⇡

R1
�1 d⌫ ei⌫0

+

Gk(i⌫)
@⌃k(i⌫)

@i⌫ 6= 0 [76, 77], being ⌃k(i⌫)
the corresponding self-energy. However, for T ! 0,
where Luttinger’s theorem applies [74, 78], such viola-
tions remain confined on one-dimensional paths in the
Brillouin zone (the AFZB) and hence vanish in the cor-
responding momentum integration.

Let us also briefly discuss the other physical regimes
shown in Fig. 1. In particular, since the Fermi surface
becomes disconnected only at the AF zone boundary, all
values of µ, V for which ⇠k = 0 and ⇠k + V = 0 do not
cross the AF zone boundary, will show only a regular
continuous hole- (I) or electron-like (VI) Fermi surface
or a completely gapped half-filled system (IV). From this
restriction we can deduce the two regions: (II), 4(t0 �
t
00) + V < µ < 4t00 + V, and (V), 4(t0 � t

00) < µ < 4t00,
where the (anti-)nodal arcs are present. When the two
regions intersect, both arcs are visible (III), similar to

FIG. 2. Fermi surface (blue line) and Luttinger surfaces (gray
line) computed for the proposed model (left column) and, by
means of D�A, for the Hubbard model (right column) at hole-
(top row) and electron-doping (bottom row) at � = 12.5. The
left half of the Brillouin zone displays the Fermi surface (blue
line) and Luttinger surface (gray dashed), while the right half
shows the spectral function at zero frequency (A(! = 0)).
Colored dots in the top row mark locations for the cuts in
Fig. 4.

the so-called “hotspots” observed in experiment [72, 79].
Connection to the Hubbard model—After illustrating
the mechanisms through which Eq. (3) displays Fermi
arcs, an important question to be addressed is how our
findings connect to the physics described by the mi-
croscopical Hamiltonian typically adopted for describing
the low-energy properties of cuprates, namely the two-
dimensional Hubbard model (HM):

H =
X

k�

(✏k � µ)n̂k� +
U

2

X

i�

n̂i�n̂i��, (5)

where ✏k is the same dispersion as in Eq. (1) and U=8t
is the strength of the on-site electrostatic repulsion. It is
well known that any reliable calculation of the spectral
properties of the HM requires advanced numerical many-
body approaches [28]. Here, we resort to the dynamical
vertex approximation (D�A) [26, 63, 64], which is a di-
agrammatic extension [80] of the dynamical mean-field
theory [81–83], capable of treating non-local spatial cor-
relations [84] even in the intermediate-to-strong coupling
regimes of cuprate physics [85]. In fact, while not exact,
D�A compares well to numerically exact quantum Monte
Carlo, where such solutions are available [29] and was re-
cently also successfully applied to the study of nickelate
superconductors [86].
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FIG. 3. (a) Spectral function A(!, k) along a high-symmetry
path � = (0, 0), X= (⇡, 0) and M= (⇡,⇡), for the ana-
lytically continued D�A solution of the Hubbard model at
n = 0.85. Visible is the dichotomy of the spectrum between
the antinode, which is gapped, and the node which is not.
This is directly reflected in the dip at the Fermi energy of
the momentum-integrated spectral function A(!), displayed
in panel (b) for a range of dopings. As expected and observed
in cuprates [7] the pseudogap is stronger at lower doping and
we observe no suppression for n  0.7.

We summarize our D�A results for the FS of the
HM, calculated at � = 12.5 (for lower temperatures
and computational details see SM [66]), both at hole-
and electron doping in the right panels of Fig. 2. Here,
clear pseudogap features are visible in terms of a sig-
nificant suppression of the Fermi-level spectral intensity
at the antinode (node) for the hole- (electron-) doped
case, while the FS around the node (antinode) remains
quite sharp and well-defined. The overall behavior can
be more precisely understood by looking at the full fre-
quency dependence of the spectral function A(!,k) along
a high-symmetry path across the BZ, for a specific case
(n = 0.85, s. Fig. 3a). Evidently, this interaction-
driven momentum-selective behavior at the Fermi energy
well resembles the one observed in our proposed model
Eq. (1). In particular, both our model and the D�A
solution of the HM yield the same evolution of Fermi-
(blue lines) in Luttinger arcs (gray dashed), as displayed
in Fig. 2. At the same time, we note that the Fermi
arcs computed in D�A do not end at the AFZB, but
are more gradually smeared out, directly reflecting the
momentum evolution of the (imaginary part of) D�A-
self-energy, which is smallest at the node (antinode) and
increases along the arc, thus resulting in a broader spec-
trum. This feature is directly reflected in the doping evo-
lution of the k-integrated spectral function A(!), shown
in Fig. 3b) for the hole-doped case.

In order to visualize the full frequency dependence of
the spectrum along the arc, we plot A(!,k) in Fig. 4
at points located on the arc (marked by colored dots
in Fig. 2(a)/(b)) for the Hubbard model and Eq. (3),
respectively. The momentum cuts start at the node
(top), where a single peak, reminiscent of a correlated
metal, is visible. This peak becomes broader towards the
AFZB, where it starts to split into two, which also marks
the onset of the LS. The di↵erences between the D�A

FIG. 4. Structure of the spectral function along the Fermi-
Luttinger surface, for the momenta indicated by the same
color in Fig. 2. Both D�A and the model are shown for
the same filling n = 0.85 and inverse temperature � = 12.5.
Left: Hubbard model using D�A. Right: exact solution of the
model Eq. 1.

and our analytical spectra can be easily rationalized
in terms of the simplified interaction in Eq. (1), which
preserves n̂k as good quantum number (and, hence,
the sharpness of the spectra along the Fermi arcs)
and is momentum independent (which reflects into the
fixed size of the interaction-driven gap). The overall
evolution of the spectral functions, though, as well as
of the corresponding Fermi/Luttinger arcs, display an
appreciable similarity.

Conclusions—We have introduced a model Hamiltonian
that, despite being analytically solvable, is able to cap-
ture the doping evolution of the Fermi surface as it is
experimentally observed in hole/electron-doped cuprates
and realized in cutting-edge numerical calculations for
the doped Hubbard model, like the D�A employed here.

The advantage of having a full analytical description at
our disposal has allowed us to rigorously investigate fun-
damental questions about the spectral properties of the
normal phase of unconventional superconductors. In par-
ticular, our results (i) demonstrate that the emergence of
disconnected parts of the FS (“Fermi arcs”) is possible,
(ii) unveil the specific way of how this can be realized, as
well as (iii) capture the di↵erences between electron and
hole doping. In particular, we have shown how Fermi arcs
and Luttinger arcs, the latter ones invisible to ARPES,
can reside on the same surface and continually evolve

„There is life“ … out of half-filling: 𝝀-DΓA study of the pseudogap in 2D

2D-Hubbard model, U=8t (t’=-0.2 t; t’’=0.1t), s. P.  Worm, M. Reitner … & AT arXiv:2312.xxxx
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FIG. S1. Same as Fig. 2 in the main text, but for � = 22.5.

III. MOTIVATION FOR THE MOMENTUM-SELECTIVE INTERACTION

That the interaction term of our model in Eq. (1) of the main text is able to e↵ectively mimic relevant features
of the non-local correlations arising from the Hubbard interaction in the pseudogap regime is far from obvious. In
fact, when taking a Fourier transform of the local Hubbard interaction to momentum space (cf. Fig. S2) one cannot
directly see that certain interaction terms are more dominant than others a priori:

U

2

X

�i

n�in��i =
U

2

X

kk0q

c
†
�kc

�k0c
†
��k0+qc��k+q (S1)

(note that we choose here the less used particle-hole transverse momentum notation, which is particular useful in the
subsequent discussion). However, by considering the Feynman diagrammatic expansions for the square lattice—due to
nesting and, possibly, also due to superexchange processes at intermediate-to-large U—we can expect that couplings
of the form of G

0
kG

0
k+Q

U

2 G
0
k0G

0
k0+Q, Q = (⇡, ⇡), will yield the dominant contributions for low temperatures and near

half-filling, especially in ladder diagrams of the spin channel. This can be readily seen, e.g., by performing a random
phase approximation (RPA) for the Hubbard model. On the other hand, strong correlation e↵ects are expected
to play a key role in the description of the pseudogap and a perturbative method like RPA, where the irreducible
vertex is kept fixed to the bare Hubbard interaction, is largely insu�cient. The model we propose allows us to take
a di↵erent approach, by restricting the interaction in momentum-space to q = Q, thereby considering the specific
coupling corresponding to the dominant spin-fluctuations. Further, the interaction is restricted to �kk0 , inspired by the
HK model, to make the model exactly solvable while still possibly incorporating strong correlation e↵ects. Previous
studies of the HK model demonstrated that interactions diagonal in momentum space, often allow for an analytical
study of otherwise hard to tackle many-body physics phenomena, such as Mott like transitions, e.g. in Refs. [S8, S9].
In particular, Refs. [S10, S11] have explored the specific e↵ects of a k-dependent modification of the HKM interaction.

Fig. S3 provides an illustrative comparison of the energy levels coupled by the interaction in the proposed model
(left) and the Hubbard model (right).
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FIG. 3. (a) Spectral function A(!, k) along a high-symmetry
path � = (0, 0), X= (⇡, 0) and M= (⇡,⇡), for the ana-
lytically continued D�A solution of the Hubbard model at
n = 0.85. Visible is the dichotomy of the spectrum between
the antinode, which is gapped, and the node which is not.
This is directly reflected in the dip at the Fermi energy of
the momentum-integrated spectral function A(!), displayed
in panel (b) for a range of dopings. As expected and observed
in cuprates [7] the pseudogap is stronger at lower doping and
we observe no suppression for n  0.7.

We summarize our D�A results for the FS of the
HM, calculated at � = 12.5 (for lower temperatures
and computational details see SM [66]), both at hole-
and electron doping in the right panels of Fig. 2. Here,
clear pseudogap features are visible in terms of a sig-
nificant suppression of the Fermi-level spectral intensity
at the antinode (node) for the hole- (electron-) doped
case, while the FS around the node (antinode) remains
quite sharp and well-defined. The overall behavior can
be more precisely understood by looking at the full fre-
quency dependence of the spectral function A(!,k) along
a high-symmetry path across the BZ, for a specific case
(n = 0.85, s. Fig. 3a). Evidently, this interaction-
driven momentum-selective behavior at the Fermi energy
well resembles the one observed in our proposed model
Eq. (1). In particular, both our model and the D�A
solution of the HM yield the same evolution of Fermi-
(blue lines) in Luttinger arcs (gray dashed), as displayed
in Fig. 2. At the same time, we note that the Fermi
arcs computed in D�A do not end at the AFZB, but
are more gradually smeared out, directly reflecting the
momentum evolution of the (imaginary part of) D�A-
self-energy, which is smallest at the node (antinode) and
increases along the arc, thus resulting in a broader spec-
trum. This feature is directly reflected in the doping evo-
lution of the k-integrated spectral function A(!), shown
in Fig. 3b) for the hole-doped case.

In order to visualize the full frequency dependence of
the spectrum along the arc, we plot A(!,k) in Fig. 4
at points located on the arc (marked by colored dots
in Fig. 2(a)/(b)) for the Hubbard model and Eq. (3),
respectively. The momentum cuts start at the node
(top), where a single peak, reminiscent of a correlated
metal, is visible. This peak becomes broader towards the
AFZB, where it starts to split into two, which also marks
the onset of the LS. The di↵erences between the D�A

FIG. 4. Structure of the spectral function along the Fermi-
Luttinger surface, for the momenta indicated by the same
color in Fig. 2. Both D�A and the model are shown for
the same filling n = 0.85 and inverse temperature � = 12.5.
Left: Hubbard model using D�A. Right: exact solution of the
model Eq. 1.

and our analytical spectra can be easily rationalized
in terms of the simplified interaction in Eq. (1), which
preserves n̂k as good quantum number (and, hence,
the sharpness of the spectra along the Fermi arcs)
and is momentum independent (which reflects into the
fixed size of the interaction-driven gap). The overall
evolution of the spectral functions, though, as well as
of the corresponding Fermi/Luttinger arcs, display an
appreciable similarity.

Conclusions—We have introduced a model Hamiltonian
that, despite being analytically solvable, is able to cap-
ture the doping evolution of the Fermi surface as it is
experimentally observed in hole/electron-doped cuprates
and realized in cutting-edge numerical calculations for
the doped Hubbard model, like the D�A employed here.

The advantage of having a full analytical description at
our disposal has allowed us to rigorously investigate fun-
damental questions about the spectral properties of the
normal phase of unconventional superconductors. In par-
ticular, our results (i) demonstrate that the emergence of
disconnected parts of the FS (“Fermi arcs”) is possible,
(ii) unveil the specific way of how this can be realized, as
well as (iii) capture the di↵erences between electron and
hole doping. In particular, we have shown how Fermi arcs
and Luttinger arcs, the latter ones invisible to ARPES,
can reside on the same surface and continually evolve
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Figure 1. (a) Particle-hole ladder diagrams (solid line: the Green function) representing antiferromagnetic spin fluctuations for
interaction U (red wiggly line). (b) More general particle-hole diagrams, including vertex corrections in strongly correlated
systems (Γ: the irreducible vertex for the particle-hole channel). (c) Such spin fluctuations act as a pairing glue for
superconductivity in the particle-particle channel. Here, an exemplary diagram for the particle-particle irreducible vertex Γpp

(blue dotted box) is shown where Γpp is made up from the particle-hole fluctuations from (b). Reprinted (figure) with permission
from [68], Copyright (2019) by the American Physical Society.

infinitesimal gap function using the normal state quantities only, which is enough for calculating the
transition temperature. In this case, we need to solve the eigenvalue problem (linearized gap equation) for
the superconducting (particle-particle) channel [49, 69],

λ∆(k) =− 1

βNk

∑

k ′

Γpp(k,k
′,q= 0)G(k ′)G(−k ′)∆(k ′), (2)

where G (∆) is the normal (anomalous) Green function, and Γpp is the irreducible vertex in the
particle-particle (cooperon) channel, depending on the four-vectors k,k ′,q (momentum and Matsubara
frequency), β is the inverse temperature, Nk is the number of k-points, and λ is the eigenvalue of the kernel
of the superconducting channel which is the key quantity. When λ reaches unity the gap function has a finite
solution, indicating the superconducting phase transition. In other words, λ→ 1 means the divergence of
the Bethe–Salpeter equation in the particle-particle channel mediated by the pairing vertex Γpp. A typical
diagrammatic structure of the spin-fluctuation mediated Γpp is shown in figure 1(c). The vertex Γpp

describes the scattering of Cooper pairs which corresponds to the pairing glue for superconductivity. As
indicated in figure 1(c) in ladder DΓA calculations we use the particle-hole ladder diagrams (blue dashed
box or figure 1(b)) that correspond to spin (and charge) fluctuations to calculate Γpp. In a more complete
but also numerically much more expensive parquet calculation [67], also the feedback of the particle-particle
fluctuations of the particle-hole fluctuations is taken into account.

One crucial issue is how to perform low-temperature calculations. This is always a problem for
studying unconventional superconductivity because of its typically low transition temperature:
Tc ! (bandwidth)/500. Since vertices depend on three frequencies, we can store and calculate only
a limited number of Matsubara frequencies which is usually insufficient for studying unconventional
superconductivity. We explain how to technically overcome this problem and summarize recent progress on
this topic in the appendix.

3. Remarks on calculating superconductivity

3.1. Eigenvalues with divergence ofΓ
As mentioned in the previous section, the fully reducible vertex function is calculated through the
Bethe–Salpeter equation. The divergence of the Bethe–Salpeter series indicates a physical phase transition
since it should connect to the divergence of the susceptibility in the corresponding fluctuation channel.
However, it was found that the irreducible vertex itself may diverge without phase transitions [70–73]. In
figure 2(a) we show red/orange lines where Γd/pp diverges without any physical instabilities in the DMFT
calculation for the two-dimensional square lattice Hubbard model (taken from [71]). Please note that this
divergence is not an artifact of the DMFT approximation and are already present in the (exactly solvable)
Hubbard atom [73]. Also, some recent studies show that these lines change if we include spatial fluctuations
[74]. It has been demonstrated recently that these divergences are responsible for a reduction in the local
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Figure 5. The phase diagram (Tc vs. doping) for the nickelate superconductor Sr0.2Nd0.8NiO2. Theoretical calculation results for
U = 2D (yellow line) and the experimental result (red diamond) are shown. The upper axis corresponds to the doping level for
the most relevant dx2−y2 band estimated from the multi-orbital DFT+DMFT study. Values are taken from [30, 103, 105].

fixed spin fluctuation instability, the vertex corrections suppress the intensity of the pairing vertex at low
frequencies. Such a screening decreases the transition temperature by orders of magnitude since the
low-frequency value is the most important for Fermi surface instabilities, such as superconductivity. These
results suggest the importance of the vertex structure of the pairing interaction for the quantitative
estimation of the superconducting transition temperatures.

Considering the dynamical screening effect, we can now compare computational results with
experiments quantitatively. Figure 5 shows the superconductivity phase diagram of the (infinite-layer)
nickelate superconductor Sr0.2Nd0.8NiO2 [30]. The theoretical (DΓA) result (yellow circles) is roughly
consistent with the experimental value of 15K at 20%-doping (pink diamond) [5]. Furthermore, the Tc

dome structure around 20%-doping is also compatible with subsequent experiments (orange squares and
red triangles) [103–105]. The inset shows the U-dependence of Tc, which is indeed quite substantial. Given
the only available experimental data point available at the time of the calculation (the red diamond), it would
have been tempting to fit U= 9t to this experiment. The first experimental phase diagram (red squares)
would have matched perfectly well with the U= 9t phase diagram from figure 5 (inset). However, this would
have been larger than what to expect from the constrained random phase approximation (cRPA). Hence we
persisted in the U≈ 8t approximation for the interaction. Eventually, it turned out that cleaner films (red
triangles) are indeed in excellent agreement with our theoretical U= 8t prediction. That is, the initial
disagreement was not because of a larger interaction but originated from the disorder in the difficult to
synthesize nickelate films. Please see the review article [106] for further details on the nickelate calculations,
e.g. the determination of the U/t value. We note that the ignored feedback effect of d-wave pairing
fluctuation on the self-energy and the interlayer coupling will somewhat decrease Tc while we expect these
are secondary (minor) effects as mentioned in section 3.2. The DΓA result was also applied to analyze the
recently found quintuple-layer nickelate superconductivity [107, 108].

The dynamical vertex structure [68] may also change the qualitative nature of the pairing. Usually, the
instability odd-frequency pairing is weak because of the node at ω= 0. On the other hand, there is a peak at
ω= 0 for the even-frequency pairing, which is favorable for a Fermi surface instability. Since the suppression
of Tc by the dynamical vertex structure occurs in low frequencies, it would more strongly affect the
even-frequency pairing, reducing the mentioned advantage of the even-frequency pairing and relatively
supporting the odd-frequency pairing. This point is further confirmed in [67], where the author analyzed
the dynamical screening effect on both even/odd-frequency-pairing explicitly. Indeed, the odd-frequency
superconductivity is observed with the dual-fermion approach for the Kondo-lattice model [94]. There, a
similar mechanism may enter while the model and relevant fluctuation are pretty different. Regarding the
dynamical structure of the vertex, it would also be an interesting question about the relation between this
dynamical screening effect and studies of non (simple-)bosonic pairing glue indicated from the real
frequency structures [109].
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A (diverging) elephant in the room (of DΓA) ?
𝜞r = ∞
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the AIM [13], where no Mott MIT takes place, and as-
cribed [8, 13, 21, 27] them to suppressive e↵ects of the
on-site/impurity charge fluctuation triggered by the for-
mation of a local magnetic moment.

Hence, in order to clarify the nature of the relation
linking the Mott MIT and the occurrence of divergences
in the irreducible vertex functions of the charge sector, it
is necessary to extend the DMFT studies performed hith-
erto to the most challenging parameter regime, namely,
the coexistence region across the MIT, which represents
the central goal of the present work.

D. Methods

The DMFT calculations of the generalized local charge
susceptibility have been performed by using a continuous-
time quantum Monte Carlo (CT-QMC) solver [40] to
sample the one and two-particle Green’s functions in
Eq. (3) for the auxiliary AIM of the corresponding self-
consistent DMFT solutions. Specifically, we used the CT-
QMC solver of the w2dynamics package [41, 42]. Fur-
ther technical details about the numerical calculations
are shortly reported in Appendix A. Here, we want to
concisely recall, how the PM and PI DMFT-solutions
in the coexistence region are obtained: Starting from
outside of the coexistence region, the interaction U is
changed step-by-step for a fixed temperature T , whereby
the previously converged DMFT calculations are used
as a starting point of the new self-consistent DMFT cy-
cle (as schematically illustrated by the two arrows in
the leftmost panel of Fig. 1). By entering the coexis-
tence/hysteresis region, the variation-steps in U must be
small (e.g. O(0.1)�O(0.01)), in order to allow for conver-
gence to di↵erent meta-stable DMFT solutions, depend-
ing on the initial condition used. In this way two di↵erent
solutions can be stabilized, at a given temperature T , in
the interval Uc1(T )<U<Uc2(T ), the PM (PI) one be-
ing obtained along the path from the left to the right
Uc1(T )!Uc2(T ) (the right to the left Uc2(T )!Uc1(T )).
For each PM or PI converged DMFT-solution obtained in
the coexistence region, the corresponding on-site general-
ized charge susceptibility is then computed as explained
above, and Fourier transformed in Matsubara frequen-
cies. The diagonalization of their corresponding matrix
representation in the fermionic Matsubara frequencies al-
lows to determine the number of negative eigenvalues,
N�<0, which, as discussed in Sec. II B, corresponds to
the number of crossed �1

c
-lines and can then be used to

approximate the �1
c
-lines (see Appendix B for further

details) in the region of the phase-diagram close to the
Mott MIT.

III. RESULTS

A. Metallic coexistence region

Our results for the PM solutions of the MIT coexis-
tence region are shown in the upper panel of Fig. 3. Here
the coexistence region is indicated as a blue framed and

FIG. 3. Phase diagrams of the MIT with PM solution in the
coexistence region (blue-shaded area) for the Hubbard model
(HM) on the Bethe lattice. Uc (blue), taken from Ref. [43],
denotes the thermodynamic transition. Upper panel: Coexis-
tence region with phase points of performed DMFT calcula-
tions, where green diamonds correspond to a metallic solution
and red squares to an insulating one. The numbers next to
markers areN�<0 and the background of the points within the
coexistence region shows an interpolating color scale of N�<0

for the metallic solution. Lower panel: Same phase diagram
as the upper panel, but showing the distinct �1

c -lines approx-
imated from the data of the phase points (see Appendix B).
Here, nHM indicates the number of crossed �1

c -lines of the
Hubbard model, coming from U=0. Dashed red and orange
lines (in both panels) mark the �1

c -lines of the Hubbard atom
(HA) according to [9] as reference, where nHA is the number
of crossed lines coming from U=0.

Should be DΓA called

rather …``D∞A‘‘ ?
[credit: G. Sangiovanni, 2013]

No, luckly this elephant… is not a dangerous one:



Working with 2PI vertices : The (non-problematic) ladder case
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By exploiting the following identity the ladder diagrams of D𝚪A can be exactly rewritten …   

… eliminating any explicit appearance of the (possibly dangerous) 𝚪AIM !
    

G. Rohringer, AT , et al., PRB (2013); G. Rohringer et al., RMP (2018) 



And, remarkably, this works even at the parquet-DΓA level !!
ü Important progress achieved by Jae-Mo Lihm, Seung-Sup Lee, F. Kugler & D. Kiese

(no spoiler here: preprint in preparation)



Conclusions:

Diagrammatic extenstions of DMFT:  two-step procedure !

# step 1:   extract a local vertex
from DMFT/EDMFT(AIM)

# step 2:  build upon that the diagrammatic expansion
(e.g., 2.order, ladder,  parquet, …) 

Inclusion of the
 nonperurbative 

local physics:
local moments

Mott MIT, etc.

☆ DΓA input:  2PI-vertex functions of DMFT
full fledged: parquet resummation

approximated: ladder resummation
self-consistent

Moriya correctionsOutlook:
➜ vertices of C-DMFT/DCA (short range correlations) input of diagrammatic expansions (long range ones)

Multiscale approaches


