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The ABINIT code

X. Gonze

Thanks to the  > 50 ABINIT contributors, and especially to GM Rignanese for 
contributions to the slides
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ABINIT software project
Ideas (1997) : 
1) Softwares for first-principles simulations are more and more complex : 

needs a worldwide collaboration, of specialized, complementary, groups
2) Linux software development : ‘free software’ model

Now (2024) : 
Estimated >2000 users worldwide
>800 kLines of F90 + many python scripts (abipy)
about 50 contributors to ABINITv8/v9/v10 

Last release v10.0 used
in this school
http://www.abinit.org

Available freely
(GPL, like Linux).
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Properties from DFT+MBPT+ …
Computation of ...

interatomic distances, angles, total energies
electronic charge densities, electronic energies

A basis for the computation of ...
chemical reactions
electronic transport
vibrational properties
thermal capacity
dielectric behaviour
optical response
superconductivity
surface properties
spectroscopic responses
...
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Basic Documentation

Web site  http://www.abinit.org ; http://docs.abinit.org
! User’s guides
! Installations notes
! List of input variables + description
! List of topics = a hub to input variables, files, tutorial, bibrefs
! over 800 example input files
! >30 tutorial lessons (each 1-2 hours)

https://docs.abinit.org/tutorial 

+ Forum Web site  http://discourse.abinit.org

http://www.abinit.org
http://forum.abinit.org
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ABINIT tutorial : layout + dependencies
https://docs.abinit.org/tutorial
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ABINIT + python : Abipy, Abitutorials …
ABINIT organization on GitHUB      https://github.com/abinit

Abipy : python library for launching ABINIT jobs, 
and analysing/plotting the results       http://pythonhosted.org/abipy
=> e.g. connecting ABINIT with tools for high-throughput
calculations developed in the Materials Project context 
(like Pymatgen, Fireworks).
Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

http://www.youtube.com/watch?v=fBIEx_yRq-4
http://www.youtube.com/watch?v=fBIEx_yRq-4
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Running ABINIT : basics
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Density Functional Theory calculations
In ABINIT …

Representation of mathematical formalism
with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions
=> wavefunctions characterized by a wavevector (k-vector)

PseudoPotentials (or Projector Augmented Waves – PAW)

Iterative techniques to solve the equations
(Schrödinger equation ; DFT Self-consistency ; optimisation 

of atomic positions)
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External files in a ABINIT run

Results : 
Text files : log, main output, energy derivatives ( _DDB) ...
Binary F90 files : density ( _DEN), potential ( _POT), wavefunctions ( _WFK), ... 
netCDF files (similar to F90) : _DEN.nc, _POT.nc, _WFK.nc

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

ABINIT

Main input, also 
with names of files

Pseudopotentials

(previous results)

« log »

Main output

(other results)
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ABINIT : the pipeline and the driver
Parser

Checks, prediction of 
memory needs ...

DRIVER

Summary of results

CPU/Wall clock 
time analysis

DFT-based :
density, forces,
MD, TDDFT, DMFT ...

Linear Responses to 
atomic displacement,
electric field, strain …

Non-linear responses

GW computation of
band structure

Treatment of each dataset in turn

Processing units

BSE excitons+optic

electron-phonon properties
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A basic ‘input’ file : dihydrogen (I)
# H2 molecule in big cubic box
# Characters after ’#’ or after ‘!’ are comments, will be ignored.
# Keywords followed by values. Order of keywords in file is not important.

# Definition of the unit cell
acell 10 10 10    # Keyword "acell" refers to lengths of primitive vectors (default in Bohr)
# Definition of the atom types
ntypat 1             # Only one type of atom
znucl 1          # Keyword "znucl" refers to atomic number of possible type(s) of atoms.
pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/H.psp8"

# Pseudopotential file name, for the only type of atom, hydrogen.
# It comes from pseudodojo site http://www.pseudo-dojo.org/ (NC SR LDA standard),
# and was generated using the LDA XC functional (PW=Perdew-Wang, ixc -1012).
# By default, abinit uses same XC functional than the one of input pseudopotential(s)

# Definition of the atoms
natom 2           # Two atoms
typat 1 1           # Both are of type 1, that is, Hydrogen
xcart # Keyword " xcart" indicates that location of the atoms

# will follow, one triplet of numbers for each atom
-0.7 0.0 0.0   # Triplet giving cartesian coordinates of atom 1, in Bohr
0.7 0.0 0.0    # Triplet giving cartesian coordinates of atom 2, in Bohr
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A basic input file : dihydrogen (II)
# Definition of planewave basis set
ecut 10.0         # Maximal plane-wave kinetic energy cut-off, in Hartree

# Definition of k-point grid
kptopt 0          # Enter k points manually
nkpt 1            # Only one k point is needed for isolated system,

# taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure
nstep 10          # Maximal number of SCF cycles
toldfe 1.0d-6     # Will stop when, twice in a row, the difference

# between two consecutive evaluations of total energy
# differs by less than toldfe (default in Hartree)

diemac 2.0        # Although this is not mandatory, it is worth to precondition the
# SCF cycle. A model dielectric function, used as standard 
# preconditioner, is described in "dielng" input variable section.
# Here, we follow prescriptions for molecules in a big box

## After modifying the following section, one might need to …
#%%<BEGIN TEST_INFO> Metadata … to be ignored in the tutorial !
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Specification of the atomic 
geometry
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ABINIT : treatment of periodic systems
eiKrPlane waves : particularly simple and efficient (when 

used with pseudopotentials), but infinite spatial extent.
Cannot use a finite set of planewaves for finite systems !
Need periodic boundary conditions.
Primitive vectors      , primitive cell volumeR j

R1

R2

R3

OK for crystalline solids
But : finite systems, surfaces, defects, polymers, 
nanosystems ... ?

Ω0
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Solution : the supercell technique

Point defect in a bulk solid

Molecule,
cluster

Surface : treatment
of a slab
Interface

The supercell must be sufficiently big : convergence study
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Examples of defects  SiO2-quartz : Pb

PbIPbO

PbSi + VOPbSi

Comparison with amorphous SiO2

72-atom supercell of quartz
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Main input file : input variable flexibility
• cell primitive vectors → rprim

… or angle (degrees) between primitive vectors → angdeg
+ scale cell vector lengths → acell
+ scale cartesian coordinates → scalecart

• number of atoms → natom
• reduced coordinates → xred (initial guess …)

… or cartesian → xcart (default in Bohr but Å if specified)
• type of atoms → typat
• space group either automatically recognized from coords,

... or → spgroup + natrd
… or number of symmetries → nsym

+ symmetry operations → symrel + tnons
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Example : cubic zirconium dioxide

Face-centered cubic, with three atoms per primitive cell



Jouvence, May 20, 2024 19

Example : cubic zirconium dioxide
natom 3
typat 1 2 2
acell 3*5.01 Angst      NOTE “*” is a repeater
rprim 0.0 0.5 0.5

0.5 0.0 0.5
0.5 0.5 0.0

xred 3*0.0  3*0.25 3*0.75
=> symmetries are found automatically 

natom 3
typat 1 2 2
acell 3*5.01 Angst
rprim 0.0 0.5 0.5

0.5 0.0 0.5
0.5 0.5 0.0

spgroup 225       natrd 2
xred 3*0.0  3*0.25           => the set of atoms is completed automatically 

OR
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• Ri(j) → rprimd(j,i)=scalecart(j)×rprim(j,i)×acell(i)

• ai → acell(i) / αi → angdeg(i)

scalecart    9.5 9.8  10.0
rprim    0.0  0.5 0.5

0.5 0.0 0.5
0.5 0.5 0.0

face-centered 
orthorhombic

acell    9.5  9.5  10.0
rprim    0.8660254038E+00  0.5 0.0

-0.8660254038E+00  0.5 0.0
0.0  0.0  1.0

hexagonalacell 9.5  9.5  10.0
angdeg 120 90 90

acell    9.0  9.0  9.0
angdeg 48 48 48 trigonal

Primitive vectors in ABINIT (rprimd)

hexagonal
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The plane wave basis set

ψ k (r) = NΩ0( )-1/2 uk  (G)
G
∑  ei(k+G)r
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Solve self-consistently the Kohn-Sham equation

Ĥ ψn  = εn ψn

 
ρ(!r ) = ψn

* (!r )ψn (
!r )

n

occ
∑

Ĥ =T̂+ V̂+V̂Hxc[ρ]

with

Eel ψ{ }  = ψn T̂+ V̂ ψn
n

occ
∑ +EHxc[ρ]

V̂(!r) =  - Zκ
!r-
!
Rκ
aaκ

∑

or minimize

ψ n (r)

ρ(r)

Ĥ

δmn  = ψm ψn for m,n ∈occupied set

A reminder : basic equations in DFT
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Periodic system : wavevectors

For a periodic Hamiltonian : wavefunctions characterized
by a wavevector      (crystal momentum) in Brillouin Zone 

Bloch’s theorem

k

ψ m,k  (r+R j ) = eik.R jψ m,k  (r)

ψ m,k  (r+N jR j ) = ψ m,k  (r)

ψ m,k  (r) = NΩ0( )-1/2  eik.rum,k  (r) um,k  (r+R j )=um,k  (r)

Born-von Karman supercell supercell vectors N jR j  with N=N1N2N3

Normalization ?
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Planewave basis set

uk (r) = uk (G)
G
∑  eiGr ψ k (r) = NΩ0( )-1/2 uk  (G)

G
∑  ei(k+G)r

Kinetic energy of a plane wave −
∇2

2
→
(k+G)2

2
The coefficients             for the lowest eigenvectors 
decrease exponentially with the kinetic energy

uk (G) k +G( )2
2

Selection of plane waves determined by a cut-off energy Ecut
k +G( )

2

2

 < Ecut Plane wave sphere

uk (G) = 1
Ωo

 e-iGr

Ωo
∫  uk (r) dr (Fourier transform)

Reciprocal lattice : set of G vectors such that eiGR j = 1
eiGr has the periodicity of the real lattice

ecut
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� 

N PW
d

� 

(2 Ecut )
1 2

24
20
16

12
8
4
0

Number of plane waves
= function of the
kinetic energy cut-off
… not continuous

Number of planewaves

Also, a (discontinuous) function of
lattice parameter at fixed kinetic energy
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Pressure

Lattice parameter

Energy

Lattice parameter

Discontinuities in energy and pressure
=> Energy (and pressure) also (discontinuous) functions of
lattice parameter at fixed kinetic energy
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u(G)=0u(G)≠0

Kinetic energy

∣k+G∣

Kinetic energy

∣k+G∣

u(G)
weak

u(G)=0u(G)≠0

Removing discontinuities

ecutsm
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Courtesy of F. BrunevalCut-off energy (Ha)

Total 
energy 
(Ha) bulk silicon

Convergence wrt to kinetic energy cutoff
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Plane waves : the density and potential 

 
f(G) = 1

Ωo!r

 e-iGr

Ωo!r
∫  f(r) dr

 
f(r) =  eiGr  f(G)

!
G
∑

⇒  n (G)  and  VH  (G)

VH  (r) =  n(r')
r-r'∫  dr' ⇔  ∇2 VH r  = -4π  n(r)

Fourier transform of a periodic function f(r)

Poisson equation

Relation between Fourier coefficients:
G2  VH (G) = 4π  n(G) VH (G) = 4π

G2  n(G)

For G2 =0  (          )   divergence of VH (         )G=0 G=0

n(G=0) = 1
Ωor

n(r)
Ωor
∫   dr Average
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Representation of the density

nnk (r) =  unk
* (r) unk (r)

Computation of  unk
* (r) unk (r)

= unk
*

G
∑ (G) eiGr⎛

⎝⎜
⎞
⎠⎟

unk
G'
∑ (G') e-iG'r⎛

⎝⎜
⎞
⎠⎟

= unk
* (G) unk (G')⎡⎣ ⎤⎦

GG'
∑  ei(G'-G)r

Non-zero coefficients for                     sphere

sphere
k+G ∈  
k+G' ∈  k+G

k+G'

G'-G The sphere for           has a double radiusn(G)

Density associated with one eigenfunction :
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From real space to reciprocal space
n(r) = 

G∈sphere(2)
∑ n(G) eiGr

Use of the discrete Fourier transform r i{ }  ↔  G{ }

n(G) = 1
Nri ri{ }
∑ n(r i ) e

-iGriReciprocal lattice

Real lattice: original cell

Fast Fourier Transform algorithm
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Representation : wrap-up
• Choice of a basis  (e.g. Plane waves)
• Truncating of the basis ->  finite basis

Sphere of plane waves

• Discontinuous increase of the number of plane waves ?
Smearing of
-> Progressive incorporation of new           vectors 

• Representation of the density
Sphere with a double radius in the reciprocal space

• Going from the real space to reciprocal space

Discrete Fourier transform
Grid of points + Fast Fourier Transform

k+G( )
2

2

< Ecut

u(G)
G

r i{ }  ↔  G{ }
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Sampling the Brillouin zone
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1
Ω ok

 Xk  dkΩ ok∫

From discrete states to Brillouin zone

ψ i −
1
2
∇2 ψ i

i
∑

n(r) = ψ i
*(r)ψ i (r)

i
∑

Discrete summations over states :

Density

In the periodic case : summation over energy bands +
integration over the Brillouin zone

1
Ω0k

Ω0k
∫ f (εF − εnk ) ψ nk − 1

2
∇2 ψ nk

n
∑ dk

n(r) = 1
Ω0k

Ω0k
∫ f (εF − εnk )ψ nk

* (r)ψ nk (r)
n
∑ dkDensity

How to treat ?  

Total kinetic energy 

Total kinetic energy 
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1
Ω ok

 Xk  dk  ⇒Ω ok∫   wkXk
{k}
∑          [ with wk  =  1 ]

{k}
∑

How to chose {   } and {      }  ?

Simple answer : Homogeneous grid (1D - 2D - 3D) and equal weights

Brillouin zone integration

Special points

k wk
Weights
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Theorem :

If • the integrand is periodic
• the integrand is continuous + derivable at all orders 
• {   }  homogeneous grid (1D - 2D - 3D) and         all equal

Then exponential convergence, with respect to 

• OK for semiconductors/insulators where the occupation number 
is independent of k within a band

• Convergence : one ought to test several grids with different
• Monkhorst & Pack grids     (Phys. Rev. B 13, 5188 (1976))

k1 x k2 x k3 points + simple cubic, FCC, BCC ...
• Other techniques ... (tetrahedron method)

k wk
C∞D∞( )

Δk

Δk

Brillouin zone integration
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• Uniformly spaced grid of nk1× nk2× nk3 points in the first Brillouin Zone 
[Monkhorst & Pack, Phys. Rev. B 13, 5188 (1976)]

nk1 = nk2 = 3 nk1 = nk2 = 4

ngkpt nk1 nk2 nk3

BZ integration : Monkhorst-Pack grid

G2

G1 G1

G2
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• k-points grid can be chosen to be shifted : not centered at Γ. 
• Advantage : comparable accuracy can be obtained with fewer k-points in 

IBZ (especially for highly symmetric cases) 

nk1 = nk2 = 3
unshifted

nk1 = nk2 = 3
shifted by (1/2,1/2)

ngkpt nk1 nk2 nk3
shiftk sk1 sk2 sk3   (defaut: 0.5 0.5 0.5)

Unshifted and shifted grids

G2

G1

G2

G1
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• k-points grid with various shifts can also be combined.

combining unshifted
and shifted by (1/2,1/2)
for nk1 = nk2 = 3

ngkpt nk1 nk2 nk3
nshiftk nsk
shiftk sk1(1)   sk2(1)   sk3(1)

sk1(2)   sk2(2)   sk3(2)
…        …        …
sk1(nsk) sk2(nsk) sk3(nsk)

Combining grids with various shifts

G2

G1
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• Using symmetries to avoid summing entire BZ :
• Restrict the sum to the Irreducible Brillouin zone (IBZ) provided that 

weights are adapted.

count this point
only once

count this point
only 6 times

count this point
only 8 times

count the points
inside the wedge
48 times

Irreducible wedge
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Treatment of metals (I)
Behaviour  of                     ?

Discontinuity of
integrand 
at Fermi level

Smearing technique

First trial : generalisation of DFT to finite temperature

f goes from 0 to 2 in an energy range 

Problem : T   needed to recover the same convergence as for 
semiconductors is very high ( >> 2000 K )

f(εnk ) = 
1

1+e(εnk−εF )/kT

E(T) ≅  E(T=0) + αT 2  + ...

f (εF − εnk )

εF
εnk

f (εF - εnk )=2

f (εF - εnk )=0

k

Energy

F(T) = E - TS

σ = kBT

occopt 3
tsmear σ
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Better technique :     obtain                     from total energy expression              
with modified occupation numbers, and             similar to a temperature

or

Gaussian smearing ! small

Gauss - Hermite smearing

! n =  4 but occupations can be negative
...
'Cold Smearing'   
(Marzari et al, Phys. Rev. Lett. 82, 3296 (1999))

! n =  3 with positive occupations

 
fnk  (εnk ) =  s . !δ(t) dt

t= εnk−εFσ

∞∫      [ with !δ(t) dt−∞
∞∫  =  1 ]

Spin factor

 
!δ(x) =  1

π
 e-x

2

 
!δ(x) =  1

π
 ( 3
2
− x2 ) e-x

2

Treatment of metals (II)
E(σ = 0) E(σ )

σ

E(σ ) = E(σ = 0) +ασ 2 +O(σ 3) with  α   small

E(σ ) = E(σ = 0) +ασ n +O(σ n+1) with  n>2  

α

 
!δ(x)

occopt 7

occopt 4/5
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nk (nk× nk× nk k-point grid)

Total energy (Ry)

bulk Al

Courtesy of S. Narasimhan

Convergence wrt k-points and smearing
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How many k points ? Smearing width ?
Rule of thumb !  Goal : lattice parameter converged better than 0.5 %

Semiconductors - Insulators

Metals

! Use symmetries ! integration in the irreducible Brillouin zone

2D Example grid  4 x 4 = 16

3 points in the irreducible Brillouin Zone

Smearing : depends on the density of electronic states (DOS) at the Fermi level
s-p Metal (Al, Na ...)   ~   0.04 Ha
d Metal (Cu, Ag...)   ~   0.01 Ha

! magnetism needs small

# k x Natoms         50 ... 500

#k x Natoms         1000 ... 2000

!

• • • •
• • • •
• • • •
• • • •

•

σ
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Pseudopotentials
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Core and valence electrons (I) 
Core electrons occupy orbitals that are « the same » in 
the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density...

« Frozen core » for i ∈core : ψ i =ψ i
atom

n(r) = ψ i
*(r)ψ i (r)

i

N

∑

      = ψ i
*(r)ψ i (r)

i∈core

Ncore

∑ + ψ i
*(r)ψ i (r)

i∈val

Nval

∑ = ncore(r) + nval (r)
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Small core / Large core 

(remark also valid for pseudopotentials, with similar cores)
It depends on the target accuracy of the calculation !

For some elements, the core/valence partitioning is obvious,
for some others, it is not.

F atom :

� 

1s( )2 + 2s( )2 2p( )5

� 

1s( )2 2s( )2 2p( )6 3s( )2 3p( )6 4s( )2 3d( )2Ti atom :

Gd atom :    small core with n=1,2,3 shells , might include
4s, 4p, and 4d in the core. 4f partially filled� 

1s( )2 2s( )2 2p( )6 3s( )2 3p( )6 4s( )2 3d( )2
small core

large core

IP       1keV              10-100 eV

IP       99.2 eV   43.3eV
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Core and valence electrons (II) 
Separation between core and valence orbitals : the energy ...

EKS ψ i{ }⎡⎣ ⎤⎦ = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )
r1 - r2

∫ dr1dr2 + Exc n[ ]

EKS ψ i{ }⎡⎣ ⎤⎦ = ψ i −
1
2
∇2 ψ i

i∈core

Ncore

∑ + Vext (r)ncore(r)∫ dr + 1
2

ncore(r1)ncore(r2 )
r1 - r2∫ dr1dr2

+ ψ i −
1
2
∇2 ψ i

i∈val

Nval

∑ + Vext (r)nval (r)∫ dr + 1
2

nval (r1)nval (r2 )
r1 - r2∫ dr1dr2

+ ncore(r1)nval (r2 )
r1 - r2∫ dr1dr2

+Exc ncore + nval[ ]
Vion =Vext + ncore



Jouvence, May 20, 2024 49

Removing core electrons (I)
From the previous construction : valence orbitals must 
still be orthogonal to core orbitals
( => oscillations, slope at the nucleus ...) 

Pseudopotentials try to remove completely the core orbitals
from the simulation

Problem with the number of nodes 
This is a strong modification of the system ...

Pseudopotentials confine the strong changes 
within a « cut-off radius »
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Removing core electrons (II)
  – 1
2 ∇2 + v ⎮ψi > = εi ⎮ψi >Going from

To 
  – 1
2 ∇2 + vps ⎮ψps,i > = εps,i ⎮ ψps, i >

Possible set of conditions (norm-conserving pseudopotentials) 
NCPP - Hamann D.R., Schlüter M., Chiang C, Phys.Rev.Lett. 43, 1494 (1979) 

  εi = εps,i
   ψi(r) = ψps,i(r) for r > rc
   ψi(r) 2 dr

r < rc
= ψps,i(r) 2 dr

r < rc

For the lowest 
angular momentum
channels (s + p ... d ...f) 

Generalisation :  ultra-soft pseudopotentials (USPP),
projector-augmented plane waves (PAW) 
Warning : be it NCPP, USPP or PAW, regions within cut-off spheres of different 
atoms forming solid or molecule should not overlap. Uncontrolled approximation !
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3s Radial wave function of Si

Radial distance [a.u.]

Am
pl

itu
de

1.0   

0.5   

0   

-0.5   
0   2   4   

Pseudo-wave function
All-electron wave function

V p
s(r

) [
H

a]

0

-1

-2

-3

-4

-5

s
p

d

0   1   2   3   
Radial distance [a.u.]

Example of pseudopotential

− Zval

r
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Pseudopotentials/PAW data in ABINIT
" Preferred PAW atomic dataset table : JTH 
Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

https://www.abinit.org/psp-tables

Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving 
pseudopotentials (e.g. ONCVPSP pseudo generator), or many others
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Pseudopotentials/PAW data in ABINIT
" Norm-conserving pseudos : pseudo-dojo approach 

Van Setten et al , Computer Physics Comm. 226, 39 (2018)
https://www.pseudo-dojo.org
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Computing the forces 
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Computing the forces (I)
Born - Oppenheimer approx.  ! find electronic ground state in potential 
created by nuclei. 

A starting configuration of nuclei  {      } is  usually NOT in equilibrium 
geometry. 

(principle of virtual works)

Forces can be computed by finite differences.

Better approach : compute the response to a perturbation

! What is the energy change ? 

Small parameter

 

Fκ,α  = - ∂E
∂Rκ ,α R

!"
κ{ }

Rκ

Rκ,α{ }  →  Rκ,α  + λδRκ,α{ }
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Computing the forces (II)
To simplify, let's compute the derivative of an electronic eigenvalue

Perturbation theory : Hellmann - Feynman theorem

not needed !

Application to the derivative with respect to an atomic displacement :

dεn
dλ

 = ψn
(0) dĤ
dλ

ψn
(0)

dψn
dλ

 

H!  = T"  + V! ext{R!} ⇒  ∂H!

∂Rκ ,α
 = ∂V

! ext

∂Rκ ,α

 ∂εn

∂Rκ ,α
= ψn

∂Ĥ
∂Rκ,α

ψn = n(r) ∂V
! ext (r)
∂Rκ ,α

dr∫
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Generalisation to density functional theory

Reminder :

If change of atomic positions ...

(can be generalized to pseudopotential case)

E[ψ i ] = ψ i T̂ ψ i
n
∑  + n(r)∫  Vext (r)dr + EHxc[n]

 
Vext (
!r ) =  − Zk'!r −

!
Rk'k '

∑

 

∂Vext (
!r )

∂Rk,α
 = + Zk'

!r −
!
Rk

2  . 
∂ !r −

!
Rk

∂Rk,α
= - Zk'
!r −
!
Rk

3  .  !r −
!
Rk( )α

 

∂E
∂Rk,α

 = n(r ') ∂Vext (r ')
∂Rk,α

dr '  = −  n(r ')
!r '−
!
Rk

3  . (!r '−
!
Rk )α d

!r '∫∫

Computing the forces (III)

Forces can be computed directly from the density ! 
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Iterative algorithms 
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Algorithmics : problems to be solved
(1) Kohn - Sham equation

Size of the system                 [2 atoms…    600 atoms…]  + vacuum ?
Dimension of the vectors          300…         100 000…             (if planewaves)

# of (occupied) eigenvectors       4…             1200…

(2) Self-consistency

(3) Geometry optimization
Find the positions          of ions such that the forces         vanish

[ = Minimization of energy ]

Current practice : iterative approaches

−
1
2
∇2 +VKS(r)

⎡
⎣⎢

⎤
⎦⎥
ψ i (r) = εiψ i (r)

rj{ }G j{ }

� 

A x i = λix i

� 

x i

VKS(r) ψ i (r)

n(r)

Rκ{ } Fκ{ }
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The ‘steepest-descent’ algorithm

=> Iterative algorithm. 
Choose a starting geometry, then a parameter       , 
and iterately update the geometry, following the forces :  

Forces are gradients of the energy : moving the atoms
along gradients is the steepest descent of the energy surface.

� 

λ

Equivalent to the simple mixing algorithm 
of SCF (see later) 

� 

Rκ ,α
(n+1) = Rκ ,α

(n) + λFκ ,α
(n)
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Energy+forces around equilib. geometry 

Analysis of forces close to the equilibrium geometry, 
at which forces vanish, thanks to a Taylor expansion :

Moreover,

Vector and matrix notation

Let us denote the equilibrium geometry as 

� 

Rκ ,α
*

� 

Rκ ,α
* →R*

� 

Rκ ,α →R

� 

Fκ ,α → F

� 

∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

→H� 

∂Fκ ',α '
∂Rκ ,α

= − ∂ 2EBO

∂Rκ ,α∂Rκ ',α '

� 

Fκ ,α = − ∂EBO

∂Rκ ,α

(the Hessian)

� 

Fκ ,α (Rκ ',α ' ) = Fκ ,α (Rκ ',α '
* ) + ∂Fκ ,α

∂Rκ ',α 'κ ',α '
∑

R*{ }
Rκ ',α ' −Rκ ',α '

*( ) +O Rκ ',α ' −Rκ ',α '
*( )2
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Steepest-descent : analysis (I)

Analysis of this algorithm, in the linear regime :

� 

Rκ ,α
(n+1) = Rκ ,α

(n) + λFκ ,α
(n)

� 

F(R) = F(R*) −H R −R*( ) +O R −R*( )2

� 

R(n+1) = R(n) + λF(n)

� 

R(n+1) −R*( ) = R(n) −R*( )− λH R(n) −R*( )

� 

R(n+1) −R*( ) = 1− λH( ) R(n) −R*( )
For convergence of the iterative procedure, the "distance"
between trial geometry and equilibrium geometry must decrease. 
1) Can we predict conditions for convergence ?
2) Can we make convergence faster ?

Need to understand the action of 
the matrix (or operator)  

� 

1− λH
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What  are the eigenvectors and eigenvalues of           ? 

symmetric, 
positive definite matrix  

The coefficient of         is multiplied by 1- hi

� 

H

� 

H

� 

= ∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

� 

Hf i = hi f i f i{ }
Discrepancy decomposed as 

� 

R(n) −R*( ) = ci
(n)

i
∑ f i

� 

R(n+1) −R*( ) = 1− λH( ) ci
(n)

i
∑ f i = ci

(n)

i
∑ 1− λhi( )f iand

� 

f i
Iteratively :

� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

λ

where        form a complete, orthonormal, basis set

Steepest-descent : analysis (II)
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Yes ! If       positive, sufficiently small ...

positive definite   =>  all hi are positive

Is it possible to have  |1- hi| <  1 , for all eigenvalues ?

� 

H
� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

The size of the discrepancy decreases if |1- hi| <  1 λ

λ

λ

Steepest-descent : analysis (III)
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The maximum of all |1- hi|  should be as small as possible.
At the optimal value of       , what will be the convergence rate ?
( = by which factor is reduced the worst component of                     ?  )

How to determine the optimal value of        ? 

As an exercise : suppose   h1 =   0.2
h2 =   1.0
h3 =   5.0

=>  what is the best value of       ?

+  what is the convergence rate  ?
� 

R(n) −R*( )

Hint : draw the three functions |1- hi| as a function of       . Then, find
the location of          where the largest of the three curves is the smallest. 

Find the coordinates of this point.

λ

λ
λ

λ

λ λ
λ

� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

Steepest-descent : analysis (IV)
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Minimise the maximum of |1- hi|

h1 =   0.2 |1- .0.2| optimum =>      = 5
h2 =   1.0 |1- . 1 | optimum =>      =  1
h3 =   5.0 |1- . 5 | optimum =>      = 0.2

?

0.2                   1  

1

h3 h2
h1

optimum =   |1- 0.2|    =   |1- 5|

1- . 0.2    =  -( 1- .5)

2 - (0.2+5)=0   =>      = 2/5.2

=  1 - 2. (0.2 / 5.2)

positive                  negative

Only  ~ 8% decrease of the error, per iteration ! Hundreds of iterations will 
be needed to reach a reduction of the error by 1000 or more.

λ

λ
λ
λ

λ
λ
λ

λ λ

λ λ

λ λ

µ

µ

λ

Note : the second eigenvalue does not play any role.
The convergence is limited by the extremal eigenvalues : if the parameter is too large, the 
smallest eigenvalue will cause divergence, but for that small parameter, the largest 
eigenvalue lead to slow decrease of the error...

Steepest-descent : analysis (V)
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The condition number
In general,      opt =  2 / (hmin + hmax)

opt =  2 / [1+ (hmax/hmin)] - 1  =  [(hmax/hmin) -1] / [(hmax/hmin) +1]

Perfect if hmax =   hmin .  Bad if hmax >>  hmin . 
hmax/hmin called the "condition" number.  A problem is "ill-conditioned" if the
condition number is large.  It does not depend on the intermediate eigenvalues.

Suppose we start from a configuration with forces on the order of 1 Ha/Bohr, and 
we want to reach the target 1e-4 Ha/Bohr. The mixing parameter is optimal.
How many iterations are needed ?
For a generic decrease factor                   , with "n" the number of iterations.

� 

F(n) ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

F(0)

� 

Δ ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

� 

n ≈ ln hmax hmin +1
hmax hmin −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−1

lnΔ ≈ 0.5 hmax hmin( )ln 1
Δ

(The latter approximate  
equality supposes a 
large condition number)

µ
λ

Δ
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Analysis of self-consistency

Natural iterative methodology   (KS : in  =>  out) :

Which quantity plays the role of a force, that should vanish at the solution  ?
The difference (generic name : a "residual")

Simple mixing algorithm 
( ≈ steepest - descent )

Analysis ...

Like the steepest-descent algorithm, this leads to the 
requirement to minimize |1- hi| where hi are eigenvalues of

(actually, the dielectric matrix)

vKS(r) ψ i (r)

n(r) vin (r)→ψ i (r)→ n(r)→ vout (r)

vout (r) − vin (r)

� 

vin
(n+1) = vin

(n) +λ vout
(n) − vin

(n)( )

� 

vout v in[ ] = vout v
*[ ] + δvoutδvin

v in − v
*( )

� 

H

� 

δvout
δvin

λ
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� 

F(R) = -H R -R*( )
� 

R(n+1) = R(n) +λ H-1( )approx F(n)
R(n+1)-R*( )= 1 - λ H-1( )

approx
H( ) R(n)-R*( )

Notes : 1) If approximate inverse Hessian perfect, optimal
geometry is reached in one step, with       =1. 
Steepest-descent NOT the best direction.
2) Non-linear effects not taken into account. For geometry
optimization, might be quite large. Even with
perfect hessian, need 5-6 steps to optimize a water molecule.
3) Approximating inverse hessian by a multiple
of the unit matrix is equivalent to changing the         value.
4) Eigenvalues and eigenvectors of
govern the convergence : the condition number can be changed.

often called a "pre-conditioner".
5) Generalisation to other optimization problems is trivial. 
(The Hessian is referred to as the Jacobian if it is not symmetric.)

� 

H-1( )approx H

� 

H-1( )approx

λ

λ

Modify the condition number (II) 
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Selfconsistent determination of the Kohn-Sham potential : 

Jacobian = dielectric matrix. 
Lowest eigenvalue close to 1.
Largest eigenvalue :
=  1.5 ... 2.5 for small close-shell molecules, and small unit cell solids
(Simple mixing will sometimes converge with parameter set to 1 !)
= the macroscopic dielectric constant (e.g. 12 for silicon),
forlarger close-shell molecules and large unit cell insulators,  
= diverge for large-unit cell metals, or open-shell molecules !

Model dielectric matrices known for rather homogeneous systems. 
Knowledge of approx. macroscopic dielectric constant

=> efficient preconditioner
Work in progress for inhomogeneous systems 

(e.g. metals/vacuum systems).

Approximate Hessian can be generated on a case-by-case basis.

Modify the condition number (III) 
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Advanced algorithms : using the history 

Instead of using only previously computed forces,
take into account past forces for past positions

Large class of methods : 
- Broyden (quasi-Newton-type),
- Davidson, 
- conjugate gradients, 
- Lanczos ... 

Approximate Hessian can be combined with usage of history
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(1) gstate.F90   

(3) scfcv.F90    

(4) vtorho.F90  

(5) vtowfk.F90 

(6) cgwf.F90    

(7) getghc.F90 

(2) moldyn.F90

Ground-state

Molecular dynamics

Self-consistent field convergence

From a potential (v) to a density (rho)

From a potential (v) to 
a wavefunction at some k-point 

Conjugate-gradient on one wavefunction

Get the application of the Hamiltonian

Stages in the main processing unit
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In practice …
(1) Kohn - Sham equation

Details are usually hidden to the user                   nline
Note that scaling with size of system is quadratic or even cubic 

(2) Self-consistency

(3) Geometry optimization / molecular dynamics 
Find the positions          of ions such that the forces         vanish

−
1
2
∇2 +VKS(r)

⎡
⎣⎢

⎤
⎦⎥
ψ i (r) = εiψ i (r)

VKS(r) ψ i (r)

n(r)

Rκ{ } Fκ{ }

Target tolerance toldfe, toldff, tolrff, tolvrs
+ Maximal number of loops     nstep
Preconditioner diemac, diemix, …

Target tolerance tolmxf
+ Maximal number of loops     ntime
Algorithm                        ionmov
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Computing 
band structure 

and density of states
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• Once the density has been determined self-consistently, it is possible to 
compute the eigenenergies/eigenfunctions rapidly for a large number of 
wavevectors, at fixed KS potential

• Band structure : 
non self-consistent calculation (iscf -2)
k-points along high-symmetry directions (kptopt<0;kptbounds;ndivk).

En
er

gy
 (e

V)

5

0

-5

-10

-15
W L Γ X W K

Non-self consistent calculations
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• Density of states (DOS) defined as number of states available in energy 
range E to E+dE :

• Recipe : determine εnk on a grid of k-points in the BZ
using a non self-consistent procedure (iscf -3).

• The δ-function is approximated by smeared-out function (typically a 
Gaussian) with a width σ (prtdos 1).

• Very fine grid of k-points needed to get sharp features accurately. 
For faster convergence, use tetrahedron method to 
interpolate between k-points (prtdos 2).

Density of states

g(E) = 1
Ω0k

Ω0k
∫ δ (E − εnk )

n
∑ dk
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Example : SiO2-quartz DOS
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Summary
- Plane waves basis set

- Brillouin zone integration

- PW need pseudopotentials

- Easy computation of forces

=> relaxation of geometry, or molecular dynamics

En
er

gy
 (e

V) 5

0
-5
-
10-
15W L Γ X W K
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Beyond the basics
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• Seitz notation for the symmetry operations of crystal :

• Applied to the equilibrium position vector of atom κ relative to the 
origin of the cell τκ, this symmetry transforms it as:

where Ra belongs to the real space lattice.

3×3 real
orthogonal
matrix vector

rotation translation

smaller than any 
primitive vector
of the crystal

symrel tnons

Symmetries in ABINIT 
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Documentation : abipy galleries
Web site                     https://github.com/abinit/abipy
! Plot gallery            http://abinit.github.io/abipy/gallery/index.html
! Flow gallery           http://abinit.github.io/abipy/flow_gallery/index.html
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Documentation : abipy galleries
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Documentation : abipy galleries
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Documentation : abitutorials
Web site                      https://github.com/abinit/abitutorials
! Jupyter notebook : very fast execution of tutorial, so 

student can grap the whole story, then come back to 
details later

! Easier if familiarized with python
! Recent, 7 lessons available
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Documentation : central ABINIT doc
Web site   https: //docs.abinit.org       Based on markdown+mkdocs
! User’s guide + Installations notes
! List of topics, input variables, tutorial (>30 lessons) 
! Theory documents including bibliography
! >1000 example input files + reference output (from test set)


