

X. Gonze

Thanks to the > 50 ABINIT contributors, and especially to GM Rignanese for contributions to the slides

ABINIT software project

Ideas (1997) :

- 1) Softwares for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
- 2) Linux software development : 'free software' model

Now (2024) :

Estimated >2000 users worldwide >800 kLines of F90 + many python scripts (abipy) about 50 contributors to ABINITv8/v9/v10

Last release v10.0 used in this school http://www.abinit.org

CLouvain

Available freely (GPL, like Linux).

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

CLouvain

Basic Documentation

Web site http://docs.abinit.org

- User's guides
- Installations notes
- List of input variables + description
- List of topics = a hub to input variables, files, tutorial, bibrefs
- > over 800 example input files
- >30 tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial
- + Forum Web site http://discourse.abinit.org

ABINIT tutorial : layout + dependencies

Jouvence, May 20, 2024

binit

UCLouvain

ABINIT + python : Abipy, Abitutorials ...

ABINIT organization on GitHUB https://github.com/abinit

Abipy : python library for launching ABINIT jobs, and analysing/plotting the results <u>http://pythonhosted.org/abipy</u> => e.g. connecting ABINIT with tools for high-throughput calculations developed in the Materials Project context (like Pymatgen, Fireworks).

Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

Running ABINIT : basics

Density Functional Theory calculations

In ABINIT ...

Representation of mathematical formalism with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions

=> wavefunctions characterized by a wavevector (k-vector)

PseudoPotentials (or Projector Augmented Waves – PAW)

Iterative techniques to solve the equations (Schrödinger equation ; DFT Self-consistency ; optimisation of atomic positions)

External files in a ABINIT run

Results : Text files : log, main output, energy derivatives (_DDB) ... Binary F90 files : density (_DEN), potential (_POT), wavefunctions (_WFK), ... netCDF files (similar to F90) : _DEN.nc, _POT.nc, _WFK.nc

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

ABINIT : the pipeline and the driver

UCLouvain

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box

Characters after '#' or after '!' are comments, will be ignored.

Keywords followed by values. Order of keywords in file is not important.

Definition of the unit cell

acell 10 10 10 # Keyword "acell" refers to lengths of primitive vectors (default in Bohr) # Definition of the atom types

ntypat 1 # Only one type of atom

znucl 1 # Keyword "znucl" refers to atomic number of possible type(s) of atoms.

pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/H.psp8"

Pseudopotential file name, for the only type of atom, hydrogen.

It comes from pseudodojo site http://www.pseudo-dojo.org/ (NC SR LDA standard),

and was generated using the LDA XC functional (PW=Perdew-Wang, ixc -1012).

By default, abinit uses same XC functional than the one of input pseudopotential(s) # Definition of the **atoms**

natom 2	# Two atoms
typat 1 1	# Both are of type 1, that is, Hydrogen
xcart	# Keyword " xcart" indicates that location of the atoms
	# will follow, one triplet of numbers for each atom
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr

A basic input file : dihydrogen (II)

Definition of planewave basis set

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

- # between two consecutive evaluations of total energy
 - # differs by less than toldfe (default in Hartree)
- diemac 2.0 # Although this is not mandatory, it is worth to precondition the # SCF cycle. A model dielectric function, used as standard # preconditioner, is described in "dielng" input variable section. # Here, we follow prescriptions for molecules in a big box

After modifying the following section, one might need to ...

#%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

Specification of the atomic geometry

ABINIT : treatment of periodic systems

Plane waves $e^{i\mathbf{Kr}}$: particularly simple and efficient (when used with pseudopotentials), but infinite spatial extent.

Cannot use a finite set of planewaves for finite systems ! Need periodic boundary conditions.

Primitive vectors \mathbf{R}_{i} , primitive cell volume Ω_{0}

OK for crystalline solids

ouvain

But : finite systems, surfaces, defects, polymers, nanosystems ... ?

Solution : the supercell technique

Molecule, cluster

Surface : treatment of a slab Interface

The supercell must be sufficiently big : convergence study

Examples of defects SiO₂-quartz : Pb

72-atom supercell of quartz

UCLouvain

16

Main input file : input variable flexibility

- cell primitive vectors \rightarrow rprim
 - ... or angle (degrees) between primitive vectors \rightarrow angdeg
 - + scale cell vector lengths \rightarrow acell
 - + scale cartesian coordinates \rightarrow scalecart
- number of atoms \rightarrow natom
- reduced coordinates → xred (initial guess ...)
 - ... or cartesian \rightarrow xcart (default in Bohr but Å if specified)
- type of atoms \rightarrow typat

UCLouvain

- space group either automatically recognized from coords,
 - ... or \rightarrow spgroup + natrd
 - ... or number of symmetries \rightarrow nsym
 - + symmetry operations \rightarrow symmetry + thons

Example : cubic zirconium dioxide

Bilbao Crystallographic Server → Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Zr1	4a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000) (0.000000,0.500000,0.500000) (0.500000,0.000000,0.500000) (0.500000,0.500000,0.000000)
02	8c (1/4,1/4,1/4)	-43m	(0.250000,0.250000,0.250000)	(0.250000,0.250000,0.250000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.750000) (0.250000,0.750000,0.750000) (0.250000,0.250000,0.750000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.250000)

Face-centered cubic, with three atoms per primitive cell

Fm-3m

a=5.010Å

b=5.010Å

c=5.010Å

∝=90.0°

β=90.0°

γ=90.0°

Example : cubic zirconium dioxide

natom 3 typat 1 2 2 acell 3*5.01 Angst NOTE "*" is a repeater rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 xred 3*0.0 3*0.25 3*0.75 => symmetries are found automatically

OR

natom 3 typat 1 2 2 acell 3*5.01 Angst rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 spgroup 225 natrd 2 xred 3*0.0 3*0.25

01 Angst 0.5 0.5 0.0 0.5 0.5 0.0 225 natrd 2 0 3*0.25 => the set of atoms is completed automatically

Primitive vectors in ABINIT (rprimd)

• $R_i(j) \rightarrow rprimd(j,i) = scalecart(j) \times rprim(j,i) \times acell(i)$

binit

UCLouvain

The plane wave basis set

$$\boldsymbol{\psi}_{\mathbf{k}}(\mathbf{r}) = \left(N\Omega_{0}\right)^{-1/2} \sum_{\mathbf{G}} u_{\mathbf{k}} (\mathbf{G}) e^{i(\mathbf{k}+\mathbf{G})\mathbf{r}}$$

A reminder : basic equations in DFT

Solve self-consistently the Kohn-Sham equation

$$\begin{cases} \hat{H} | \boldsymbol{\psi}_{n} \rangle = \boldsymbol{\varepsilon}_{n} | \boldsymbol{\psi}_{n} \rangle \\ \hat{H} = \hat{T} + \hat{V} + \hat{V}_{Hxc}[\boldsymbol{\rho}] \\ \boldsymbol{\rho}(\vec{r}) = \sum_{n}^{occ} \boldsymbol{\psi}_{n}^{*}(\vec{r}) \boldsymbol{\psi}_{n}(\vec{r}) \\ \text{or minimize} \\ \text{or minimize} \\ kith \\ \hat{V}(\vec{r}) = \sum_{n}^{occ} \langle \boldsymbol{\psi}_{n} | \hat{T} + \hat{V} | \boldsymbol{\psi}_{n} \rangle + E_{Hxc}[\boldsymbol{\rho}] \\ \text{with} \\ \hat{V}(\vec{r}) = \sum_{n}^{c} - \frac{Z_{\kappa}}{|\vec{r} - \vec{R}_{\kappa}^{a}|} \end{cases}$$

Jouvence, May 20, 2024

Periodic system : wavevectors

For a periodic Hamiltonian : wavefunctions characterized by a wavevector $\,k$ (crystal momentum) in Brillouin Zone

Bloch's theorem
$$\Psi_{m,k}$$
 $(\mathbf{r}+\mathbf{R}_j) = e^{i\mathbf{k}\cdot\mathbf{R}_j}\Psi_{m,k}$ (\mathbf{r})

$$\boldsymbol{\psi}_{m,\mathbf{k}} (\mathbf{r}) = \left(N \Omega_0 \right)^{-1/2} e^{i\mathbf{k}\cdot\mathbf{r}} u_{m,\mathbf{k}} (\mathbf{r}) \qquad u_{m,\mathbf{k}} (\mathbf{r} + \mathbf{R}_j) = u_{m,\mathbf{k}} (\mathbf{r})$$

Normalization ?

Louvain

Born-von Karman supercell supercell vectors $N_j R_j$ with $N=N_1N_2N_3$ $\psi_{m,k}$ $(r+N_j R_j) = \psi_{m,k}$ (r)

Planewave basis set

Reciprocal lattice : set of **G** vectors such that $e^{i\mathbf{GR}_j} = 1$ $e^{i\mathbf{Gr}}$ has the periodicity of the real lattice

Number of planewaves

Number of plane waves = function of the kinetic energy cut-off ... not continuous

Also, a (discontinuous) function of lattice parameter at fixed kinetic energy

Ο

Ο

Ο

Ο

Ο

Ο

Ο

0

Discontinuities in energy and pressure

=> Energy (and pressure) also (discontinuous) functions of lattice parameter at fixed kinetic energy

ouvain

Removing discontinuities

UCLouvain

Convergence wrt to kinetic energy cutoff

Plane waves : the density and potential

Fourier transform of a periodic function $f(\mathbf{r})$

$$f(\mathbf{G}) = \frac{1}{\Omega_{o\vec{r}}} \int_{\Omega_{o\vec{r}}} e^{-i\mathbf{G}\mathbf{r}} f(\mathbf{r}) d\mathbf{r} \qquad f(\mathbf{r}) = \sum_{\vec{G}} e^{i\mathbf{G}\mathbf{r}} f(\mathbf{G})$$

 $\begin{array}{ll} \text{Poisson equation} & \Rightarrow n \left(\mathbf{G} \right) \text{ and } V_{\mathrm{H}} \left(\mathbf{G} \right) \\ V_{\mathrm{H}} \left(\mathbf{r} \right) = \int \left. \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}\mathbf{r}' \ \Leftrightarrow \ \nabla^2 \, V_{\mathrm{H}} \right|_{\mathbf{r}} = -4\pi \, n(\mathbf{r}) \end{array}$

Relation between Fourier coefficients:

binit

Louvain

$$G^{2} V_{H}(G) = 4\pi n(G) \qquad V_{H}(G) = \frac{4\pi}{G^{2}} n(G)$$

For G² =0 (G=0) divergence of V_H (G=0)
$$n(G=0) = \frac{1}{\Omega_{or}} \int_{\Omega_{or}} n(\mathbf{r}) d\mathbf{r} \qquad \text{Average}$$

Jouvence, May 20, 2024

1 -

Representation of the density

Density associated with one eigenfunction :

$$n_{nk}(\mathbf{r}) = u_{nk}^{*}(\mathbf{r}) u_{nk}(\mathbf{r})$$

$$= \left(\sum_{\mathbf{G}} u_{nk}^{*}(\mathbf{G}) e^{i\mathbf{G}\mathbf{r}}\right) \left(\sum_{\mathbf{G}'} u_{nk}(\mathbf{G}') e^{-i\mathbf{G}'\mathbf{r}}\right)$$

$$= \sum_{\mathbf{G}} \left[u_{nk}^{*}(\mathbf{G}) u_{nk}(\mathbf{G}')\right] e^{i(\mathbf{G}'-\mathbf{G})\mathbf{r}}$$
Non-zero coefficients for $\mathbf{k}+\mathbf{G} \in$ sphere $\mathbf{k}+\mathbf{G}' \in$ sphere

The sphere for n(G) has a double radius

Computation of

k+G

G'-G

k+G'

ouvain

Representation : wrap-up

- Choice of a basis (e.g. Plane waves)
- Truncating of the basis -> finite basis

 $\frac{(\mathbf{k}+\mathbf{G})^2}{2} < \mathbf{E}_{\text{cut}}$ Sphere of plane waves

• Discontinuous increase of the number of plane waves ?

Smearing of u(G)

-> Progressive incorporation of new G vectors

• Representation of the density

Sphere with a double radius in the reciprocal space

• Going from the real space to reciprocal space

Discrete Fourier transform

Grid of points + Fast Fourier Transform

$$\left\{ \mathbf{r}_{\mathrm{i}} \right\} \iff \left\{ \mathbf{G} \right\}$$

Sampling the Brillouin zone

From discrete states to Brillouin zone

Discrete summations over states :

Total kinetic energy
$$\sum_{i} \langle \psi_{i} | -\frac{1}{2} \nabla^{2} | \psi_{i} \rangle$$

Density
$$n(\mathbf{r}) = \sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$

In the periodic case : summation over energy bands + integration over the Brillouin zone $\sum \frac{1}{\Omega} \int_{\Omega_{\text{ob}}} f(\varepsilon_F - \varepsilon_{\text{nk}}) \langle \psi_{\text{nk}} | - \frac{1}{2} \nabla^2 | \psi_{\text{nk}} \rangle d\mathbf{k}$

Total kinotia oporav

ouvain

Density
$$n(\mathbf{r}) = \sum_{n=1}^{n} \frac{1}{1-1} \int f(\varepsilon_{r}) dr$$

Density
$$n(\mathbf{r}) = \sum_{n} \frac{1}{\Omega_{0\mathbf{k}}} \int_{\Omega_{0\mathbf{k}}} f(\varepsilon_F - \varepsilon_{n\mathbf{k}}) \psi_{n\mathbf{k}}^*(\mathbf{r}) \psi_{n\mathbf{k}}(\mathbf{r}) d\mathbf{k}$$

How to treat
$$\frac{1}{\Omega_{ok}} \int_{\Omega_{ok}} X_k \, dk$$
 ?

Jouvence, May 20, 2024

Brillouin zone integration

Simple answer : Homogeneous grid (1D - 2D - 3D) and equal weights

Homogeneous sampling of the Brillouin zone

Jouvence, May 20, 2024

Brillouin zone integration

Theorem :

- If the integrand is periodic
 - the integrand is continuous + derivable at all orders $(C^{\infty}D^{\infty})$
 - $\{k\}\,$ homogeneous grid (1D 2D 3D) and $\,\,w_k\,$ all equal

Then exponential convergence, with respect to $\Delta \mathbf{k}$

- OK for semiconductors/insulators where the occupation number is independent of k within a band
- Convergence : one ought to test several grids with different Δk
- Monkhorst & Pack grids (Phys. Rev. B 13, 5188 (1976))
 - $k_1 \ge k_2 \ge k_3$ points + simple cubic, FCC, BCC ...
- Other techniques ... (tetrahedron method)
BZ integration : Monkhorst-Pack grid

• Uniformly spaced grid of $n_{k1} \times n_{k2} \times n_{k3}$ points in the first Brillouin Zone [Monkhorst & Pack, Phys. Rev. B 13, 5188 (1976)]

ngkpt nk1 nk2 nk3

Jouvence, May 20, 2024

Unshifted and shifted grids

- k-points grid can be chosen to be shifted : not centered at Γ.
- Advantage : comparable accuracy can be obtained with fewer k-points in IBZ (especially for highly symmetric cases)

Dini

ouvain

Combining grids with various shifts

• k-points grid with various shifts can also be combined.

bini

CLouvain

Irreducible wedge

- Using symmetries to avoid summing entire BZ : •
- Restrict the sum to the Irreducible Brillouin zone (IBZ) provided that • weights are adapted.

Treatment of metals (I)

binit

JCLouvain

Problem : T needed to recover the same convergence as for semiconductors is very high (>> 2000 K)

Jouvence, May 20, 2024

Treatment of metals (II)

Better technique : obtain $E(\sigma = 0)$ from total energy expression $E(\sigma)$ with modified occupation numbers, and σ similar to a temperature

$$E(\sigma) = E(\sigma = 0) + \alpha \sigma^2 + O(\sigma^3)$$
 with α small

CLouvain

or
$$E(\sigma) = E(\sigma = 0) + \alpha \sigma^n + O(\sigma^{n+1})$$
 with $n>2$

$$f_{nk} (\varepsilon_{nk}) = s \int_{t=\frac{\varepsilon_{nk}-\varepsilon_{F}}{\sigma}}^{\infty} \tilde{\delta}(t) dt \quad [\text{ with } \int_{-\infty}^{\infty} \tilde{\delta}(t) dt = 1]$$
Spin factor

Convergence wrt k-points and smearing

How many k points ? Smearing width ?

Rule of thumb ! Goal : lattice parameter converged better than 0.5 %

Semiconductors - Insulators# k x N_{atoms} 50 ... 500Metals# k x N_{atoms} 1000 ... 2000

<u>/i</u>

Louvain

Use symmetries ⇒ integration in the irreducible Brillouin zone

2D Example
$$grid 4 x 4 = 16$$

 3 points in the irreducible Brillouin Zone

Smearing : depends on the density of electronic states (DOS) at the Fermi level s-p Metal (Al, Na ...) ~ 0.04 Ha d Metal (Cu, Ag...) ~ 0.01 Ha <u>Magnetism needs small</u> σ

Pseudopotentials

Core and valence electrons (I)

Core electrons occupy orbitals that are « the same » in the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density...

$$n(\mathbf{r}) = \sum_{i}^{N} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$
$$= \sum_{i \in core}^{N_{core}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) + \sum_{i \in val}^{N_{val}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) = n_{core}(\mathbf{r}) + n_{val}(\mathbf{r})$$

« Frozen core » for $i \in core : \psi_i = \psi_i^{atom}$

ouvain

Small core / Large core

oini

Louvain

It depends on the target accuracy of the calculation ! (remark also valid for pseudopotentials, with similar cores) For some elements, the core/valence partitioning is obvious, for some others, it is not.

F atom :
$$(1s)^{2} + (2s)^{2}(2p)^{5}$$

IP 1keV 10-100 eV
Ti atom : $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ small core
 $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ large core
IP 99.2 eV 43.3eV

Gd atom : small core with n=1,2,3 shells , might include 4s, 4p, and 4d in the core. 4f partially filled

Core and valence electrons (II)

Separation between core and valence orbitals : the energy ...

$$E_{\text{KS}}\left[\left\{\psi_{i}\right\}\right] = \sum_{i} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \frac{n(\mathbf{r}_{1})n(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}d\mathbf{r}_{1}d\mathbf{r}_{2} + E_{xc}\left[n\right]$$

$$E_{\text{KS}}\left[\left\{\psi_{i}\right\}\right] = \sum_{i \in core}^{N_{core}} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n_{core}(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \frac{n_{core}(\mathbf{r}_{1})n_{core}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \sum_{i \in val}^{N_{val}} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n_{val}(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \frac{n_{val}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \int \frac{n_{core}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$V_{ion} = V_{ext} + n_{core}$$

$$+ E_{xe}\left[n_{core} + n_{val}\right]$$

CLouvain

Removing core electrons (I)

From the previous construction : valence orbitals must still be orthogonal to core orbitals (=> oscillations, slope at the nucleus ...)

Pseudopotentials try to remove completely the core orbitals from the simulation

Problem with the number of nodes This is a strong modification of the system ...

Pseudopotentials confine the strong changes within a « cut-off radius »

Removing core electrons (II)

Going from $\left(-\frac{1}{2}\nabla^2 + v\right) |\psi_i\rangle = \varepsilon_i |\psi_i\rangle$

To
$$\left(-\frac{1}{2}\nabla^2 + v_{ps}\right) |\psi_{ps,i}\rangle = \varepsilon_{ps,i} |\psi_{ps,i}\rangle$$

Possible set of conditions (norm-conserving pseudopotentials) NCPP - Hamann D.R., Schlüter M., Chiang C, Phys.Rev.Lett. 43, 1494 (1979)

$$\varepsilon_{i} = \varepsilon_{ps,i}$$

$$\psi_{i}(\mathbf{r}) = \psi_{ps,i}(\mathbf{r}) \quad \text{for } \mathbf{r} > \mathbf{r}_{c}$$

$$\int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{i}(\mathbf{r})|^{2} d\mathbf{r} = \int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{ps,i}(\mathbf{r})|^{2} d\mathbf{r}$$

JCLouvain

For the lowest angular momentum channels (s + p ... d ...f)

Generalisation : ultra-soft pseudopotentials (USPP), projector-augmented plane waves (PAW)

Warning : be it NCPP, USPP or PAW, regions within cut-off spheres of different atoms forming solid or molecule should not overlap. Uncontrolled approximation !

Example of pseudopotential

CLouvain

Pseudopotentials/PAW data in ABINIT

• Preferred PAW atomic dataset table : JTH

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

He н Be N Ne Li C 0 F в Na Mg Al Si S Cl Р \mathbf{Ar} Sc Ti Mn Fe Co Ni Cu Zn Ga Ge As Se \mathbf{Br} \mathbf{Kr} Ca v \mathbf{Cr} \mathbf{K} Ag Rb \mathbf{Sr} Y $\mathbf{Z}\mathbf{r}$ Nb Mo Tc Ru Rh Pd Cd In Sn Sb Te Xe Hf Ta W Re 0s \mathbf{h} Pt Au Hg Tl Pb Bi Po Cs Ba At Rn Sg Rf Hs Mt Fr | Ra Ha Ns Nd Pm Sm Gd Tb Pr Eu Er La Ce Dy | Ho Tm Yb Lu Pa Pu Cm Bk Cf Fm Md Ac Th U No Am Es No Lr

https://www.abinit.org/psp-tables

Atomic data available

Atomic data non available

Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving pseudopotentials (e.g. ONCVPSP pseudo generator), or many others

Pseudopotentials/PAW data in ABINIT

Norm-conserving pseudos : pseudo-dojo approach

Van Setten et al , Computer Physics Comm. 226, 39 (2018)

https://www.pseudo-dojo.org

binit

UCLouvain

Computing the forces

Computing the forces (I)

Born - Oppenheimer approx. \Rightarrow find electronic ground state in potential created by nuclei.

A starting configuration of nuclei $\{R_{\kappa}\}$ is usually NOT in equilibrium geometry.

 $F_{\kappa,\alpha} = -\frac{\partial E}{\partial R_{\kappa,\alpha}} \Big|_{\left\{ \vec{R}_{\kappa} \right\}} \quad \text{(principle of virtual works)}$

Forces can be computed by finite differences.

Better approach : compute the response to a perturbation

 \Rightarrow What is the energy change ?

$$\left\{ R_{\kappa,\alpha} \right\} \rightarrow \left\{ R_{\kappa,\alpha} + \lambda \delta R_{\kappa,\alpha} \right\}$$
Small parameter

Computing the forces (II)

To simplify, let's compute the derivative of an electronic eigenvalue

Perturbation theory : Hellmann - Feynman theorem

$$\frac{d\varepsilon_{n}}{d\lambda} = \left\langle \psi_{n}^{(0)} \middle| \frac{d\hat{H}}{d\lambda} \middle| \psi_{n}^{(0)} \right\rangle$$
$$\frac{d\psi_{n}}{d\lambda} \text{ not needed !}$$

Louvain

Application to the derivative with respect to an atomic displacement :

$$\widehat{H} = \widehat{T} + \widehat{V}_{ext} \{ \widehat{R} \} \implies \frac{\partial \widehat{H}}{\partial R_{\kappa,\alpha}} = \frac{\partial \widehat{V}_{ext}}{\partial R_{\kappa,\alpha}}$$
$$\frac{\partial \varepsilon_n}{\partial R_{\kappa,\alpha}} = \left\langle \psi_n \left| \frac{\partial \widehat{H}}{\partial R_{\kappa,\alpha}} \right| \psi_n \right\rangle = \int n(\mathbf{r}) \frac{\partial \widehat{V}_{ext}(\mathbf{r})}{\partial R_{\kappa,\alpha}} d\mathbf{r}$$

Jouvence, May 20, 2024

Computing the forces (III)

Generalisation to density functional theory

binit

CLouvain

Reminder: $E[\psi_i] = \sum_{n} \langle \psi_i | \hat{T} | \psi_i \rangle + \int n(\mathbf{r}) V_{ext}(\mathbf{r}) d\mathbf{r} + E_{Hxc}[n]$ If change of atomic positions ...

$$V_{ext}(\vec{r}) = \sum_{k'} -\frac{Z_{k'}}{\left|\vec{r} - \vec{R}_{k'}\right|}$$
 (can be generalized to pseudopotential case

$$\frac{\partial V_{\text{ext}}(\vec{r})}{\partial R_{k,\alpha}} = + \frac{Z_{k'}}{\left|\vec{r} - \vec{R}_{k}\right|^{2}} \cdot \frac{\partial \left|\vec{r} - \vec{R}_{k}\right|}{\partial R_{k,\alpha}} = - \frac{Z_{k'}}{\left|\vec{r} - \vec{R}_{k}\right|^{3}} \cdot \left(\vec{r} - \vec{R}_{k}\right)_{\alpha}$$

$$\frac{\partial E}{\partial R_{k,\alpha}} = \int n(r') \frac{\partial V_{ext}(r')}{\partial R_{k,\alpha}} dr' = - \int \frac{n(r')}{\left|\vec{r}' - \vec{R}_k\right|^3} \cdot (\vec{r}' - \vec{R}_k)_{\alpha} d\vec{r}'$$

Forces can be computed directly from the density !

Jouvence, May 20, 2024

Iterative algorithms

Algorithmics : problems to be solved

(1) Kohn - Sham equation

$$\underline{\underline{A}} \underline{\underline{X}}_i = \lambda_i \underline{\underline{X}}_i$$

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{KS}(\mathbf{r}) \end{bmatrix} \boldsymbol{\psi}_i(\mathbf{r}) = \boldsymbol{\varepsilon}_i \, \boldsymbol{\psi}_i(\mathbf{r})$$
$$\begin{cases} \mathbf{G}_j \end{bmatrix} \qquad \left\{ \mathbf{r}_j \right\}$$

Size of the system[2 atoms...]600 atoms...] + vacuum ?Dimension of the vectors \underline{x}_i 300...100 000...(if planewaves)# of (occupied) eigenvectors4...1200...

(2) Self-consistency

JCLouvain

binit

$$V_{KS}(\mathbf{r}) \qquad \psi_i(\mathbf{r})$$

(3) Geometry optimization

Find the positions $\{\mathbf{R}_{\kappa}\}$ of ions such that the forces $\{\mathbf{F}_{\kappa}\}$ vanish [= Minimization of energy]

Current practice : iterative approaches

The 'steepest-descent' algorithm

Forces are gradients of the energy : moving the atoms along gradients is the steepest descent of the energy surface.

=> Iterative algorithm.

Choose a starting geometry, then a parameter λ , and iterately update the geometry, following the forces :

$$\mathbf{R}_{\kappa,\alpha}^{(n+1)} = \mathbf{R}_{\kappa,\alpha}^{(n)} + \lambda \mathbf{F}_{\kappa,\alpha}^{(n)}$$

Equivalent to the simple mixing algorithm of SCF (see later)

Energy+forces around equilib. geometry

Let us denote the equilibrium geometry as $R_{\kappa,\alpha}^*$

Analysis of forces close to the equilibrium geometry, at which forces vanish, thanks to a Taylor expansion :

$$F_{\kappa,\alpha}(R_{\kappa',\alpha'}) = F_{\kappa,\alpha}(R_{\kappa',\alpha'}) + \sum_{\kappa',\alpha'} \frac{\partial F_{\kappa,\alpha}}{\partial R_{\kappa',\alpha'}} \Big|_{\{R^*\}} \left(R_{\kappa',\alpha'} - R_{\kappa',\alpha'}^* \right) + O\left(R_{\kappa',\alpha'} - R_{\kappa',\alpha'}^* \right)^2$$
Moreover, $F_{\kappa,\alpha} = -\frac{\partial E^{BO}}{\partial R_{\kappa,\alpha}}$

$$\frac{\partial F_{\kappa',\alpha'}}{\partial R_{\kappa,\alpha}} = -\frac{\partial^2 E^{BO}}{\partial R_{\kappa,\alpha'}}$$
Vector and matrix notation
$$R_{\kappa,\alpha}^* \to \underline{R}^* \qquad F_{\kappa,\alpha} \to \underline{F} \qquad \frac{\partial^2 E^{BO}}{\partial R_{\kappa,\alpha} \partial R_{\kappa',\alpha'}} \Big|_{\{R_{\kappa,\alpha}^*\}} \to \underline{H}$$
(the Hessian Jouvence, May 20, 2024

Steepest-descent : analysis (I)

$$\mathbf{R}_{\kappa,\alpha}^{(n+1)} = \mathbf{R}_{\kappa,\alpha}^{(n)} + \lambda F_{\kappa,\alpha}^{(n)}$$

Analysis of this algorithm, in the linear regime :

$$\underline{F}(\underline{R}) = \underline{F}(\underline{R}^{*}) - \underline{\underline{H}}(\underline{R} - \underline{R}^{*}) + O(\underline{R} - \underline{R}^{*})^{2}$$

$$\underline{R}^{(n+1)} = \underline{R}^{(n)} + \lambda \underline{F}^{(n)} \longrightarrow (\underline{R}^{(n+1)} - \underline{R}^{*}) = (\underline{R}^{(n)} - \underline{R}^{*}) - \lambda \underline{\underline{H}}(\underline{R}^{(n)} - \underline{R}^{*})$$

$$(\underline{R}^{(n+1)} - \underline{R}^{*}) = (\underline{1} - \lambda \underline{\underline{H}})(\underline{R}^{(n)} - \underline{R}^{*})$$

For convergence of the iterative procedure, the "distance" between trial geometry and equilibrium geometry must decrease.

- 1) Can we predict conditions for convergence?
- 2) Can we make convergence faster ?

Need to understand the action of the matrix (or operator)

$$\underline{1} - \lambda \underline{\underline{H}}$$

Steepest-descent : analysis (II)

What are the eigenvectors and eigenvalues of $\underline{\underline{H}}$?

<u>H</u> symmetric, positive definite matrix

ouvain

$$\left(=\frac{\partial^2 E^{BO}}{\partial R_{\kappa,\alpha}\partial R_{\kappa',\alpha'}}\Big|_{\left\{R_{\kappa,\alpha}^*\right\}}\right)$$

 $\underline{\underline{H}} \underline{\underline{f}}_{i} = \underline{h}_{i} \underline{\underline{f}}_{i} \text{ where } \left\{ \underline{\underline{f}}_{i} \right\} \text{ form a complete, orthonormal, basis set}$ Discrepancy decomposed as $\left(\underline{\underline{R}}^{(n)} - \underline{\underline{R}}^{*}\right) = \sum_{i} c_{i}^{(n)} \underline{\underline{f}}_{i}$ and $\left(\underline{\underline{R}}^{(n+1)} - \underline{\underline{R}}^{*}\right) = \left(\underline{\underline{1}} - \lambda \underline{\underline{H}}\right) \sum_{i} c_{i}^{(n)} \underline{\underline{f}}_{i} = \sum_{i} c_{i}^{(n)} (1 - \lambda \underline{h}_{i}) \underline{\underline{f}}_{i}$ The coefficient of $\underline{\underline{f}}_{i} \text{ is multiplied by 1- } \lambda \underline{\underline{h}}_{i}$ Iteratively: $\left(\underline{\underline{R}}^{(n)} - \underline{\underline{R}}^{*}\right) = \sum_{i} c_{i}^{(0)} (1 - \lambda \underline{h}_{i})^{(n)} \underline{\underline{f}}_{i}$

Steepest-descent : analysis (III)

$$\left(\underline{\mathbf{R}}^{(n)} - \underline{\mathbf{R}}^{*}\right) = \sum_{i} c_{i}^{(0)} \left(1 - \lambda h_{i}\right)^{(n)} \underline{\mathbf{f}}_{i}$$

The size of the discrepancy decreases if $|1 - \lambda h_i| < 1$ Is it possible to have $|1 - \lambda h_i| < 1$, for all eigenvalues ? H positive definite => all h_i are positive

Yes ! If λ positive, sufficiently small ...

Steepest-descent : analysis (IV)

$$\left(\underline{\mathbf{R}}^{(n)} - \underline{\mathbf{R}}^{*}\right) = \sum_{i} c_{i}^{(0)} \left(1 - \lambda h_{i}\right)^{(n)} \underline{\mathbf{f}}_{i}$$

Dini

CLouvain

How to determine the optimal value of λ ?

The maximum of all $|1 - \lambda h_i|$ should be as small as possible. At the optimal value of λ , what will be the convergence rate ? (= by which factor is reduced the worst component of $(\underline{R}^{(n)} - \underline{R}^*)$?)

As an exercise : suppose
$$\begin{array}{c} h_1 = & 0.2 \\ h_2 = & 1.0 \\ h_3 = & 5.0 \end{array}$$
 => what is the best value of λ ?
+ what is the convergence rate ?

Hint : draw the three functions $|1 - \lambda h_i|$ as a function of λ . Then, find the location of λ where the largest of the three curves is the smallest. Find the coordinates of this point.

Steepest-descent : analysis (V)

Minimise the maximum of $|1 - \lambda h_i|$

Only ~ 8% decrease of the error, per iteration ! Hundreds of iterations will be needed to reach a reduction of the error by 1000 or more.

Note : the second eigenvalue does not play any role.

The convergence is limited by the extremal eigenvalues : if the parameter is too large, the smallest eigenvalue will cause divergence, but for that small parameter, the largest eigenvalue lead to slow decrease of the error...

UCLouvain

The condition number

In general, $\lambda_{opt} = 2 / (h_{min} + h_{max})$ $\mu_{opt} = 2 / [1 + (h_{max}/h_{min})] - 1 = [(h_{max}/h_{min}) - 1] / [(h_{max}/h_{min}) + 1]$

Perfect if $h_{max} = h_{min}$. Bad if $h_{max} >> h_{min}$. h_{max}/h_{min} called the "condition" number. A problem is "ill-conditioned" if the condition number is large. It does not depend on the intermediate eigenvalues.

Suppose we start from a configuration with forces on the order of 1 Ha/Bohr, and we want to reach the target 1e-4 Ha/Bohr. The mixing parameter is optimal. How many iterations are needed ?

For a generic decrease factor

 Δ , with "n" the number of iterations.

$$\begin{split} \left\| \underline{F}^{(n)} \right\| \approx \left(\frac{h_{\max}/h_{\min} - 1}{h_{\max}/h_{\min} + 1} \right)^{n} \left\| \underline{F}^{(0)} \right\| & \Delta \approx \left(\frac{h_{\max}/h_{\min} - 1}{h_{\max}/h_{\min} + 1} \right)^{n} \\ & \sum_{n \approx \left[\ln \left(\frac{h_{\max}/h_{\min} + 1}{h_{\max}/h_{\min} - 1} \right) \right]^{-1} \ln \Delta \approx 0.5 \left(h_{\max}/h_{\min} \right) \ln \frac{1}{\Delta} \end{split}$$
 (The latter approximate equality supposes a large condition number)

Jouvence, May 20, 2024

Analysis of self-consistency

 $v_{in}(\mathbf{r}) \rightarrow \psi_i(\mathbf{r}) \rightarrow n(\mathbf{r}) \rightarrow v_{out}(\mathbf{r})$ Natural iterative methodology (KS : in => out) :

Which quantity plays the role of a force, that should vanish at the solution ?

The difference

 $v_{out}(\mathbf{r}) - v_{in}(\mathbf{r})$ (generic name : a "residual")

Simple mixing algorithm (\approx steepest - descent)

ouvain

binit

$$\underline{\mathbf{v}}_{\text{in}}^{(n+1)} = \underline{\mathbf{v}}_{\text{in}}^{(n)} + \lambda \left(\underline{\mathbf{v}}_{\text{out}}^{(n)} - \underline{\mathbf{v}}_{\text{in}}^{(n)} \right)$$

Analysis ...
$$\underline{\mathbf{v}}_{\text{out}} \left[\underline{\mathbf{v}}_{\text{in}} \right] = \underline{\mathbf{v}}_{\text{out}} \left[\underline{\mathbf{v}}^* \right] + \frac{\delta \underline{\mathbf{v}}_{\text{out}}}{\delta \underline{\mathbf{v}}_{\text{in}}} \left(\underline{\mathbf{v}}_{\text{in}} - \underline{\mathbf{v}}^* \right)$$

$$\underline{\underline{\mathbf{H}}}$$

Like the steepest-descent algorithm, this leads to the requirement to minimize $|1 - \lambda h_i|$ where h_i are eigenvalues of

Modify the condition number (II)

$$\underline{\mathbf{R}}^{(n+1)} = \underline{\mathbf{R}}^{(n)} + \lambda \left(\underline{\underline{\mathbf{H}}}^{-1}\right)_{\text{approx}} \underline{\mathbf{F}}^{(n)}$$

$$\underline{\mathbf{F}}(\underline{\mathbf{R}}) = -\underline{\underline{\mathbf{H}}}\left(\underline{\mathbf{R}} - \underline{\mathbf{R}}^{*}\right) \implies \left(\underline{\mathbf{R}}^{(n+1)} - \underline{\mathbf{R}}^{*}\right) = \left(1 - \lambda \left(\underline{\underline{\mathbf{H}}}^{-1}\right)_{\text{approx}} \underline{\underline{\mathbf{H}}}\right) \left(\underline{\mathbf{R}}^{(n)} - \underline{\mathbf{R}}^{*}\right)$$

Notes : 1) If approximate inverse Hessian perfect, optimal geometry is reached in one step, with $\lambda = 1$. Steepest-descent NOT the best direction. 2) Non-linear effects not taken into account. For geometry optimization, might be quite large. Even with perfect hessian, need 5-6 steps to optimize a water molecule. 3) Approximating inverse hessian by a multiple of the unit matrix is equivalent to changing the λ value. 4) Eigenvalues and eigenvectors of $(\underline{\underline{H}}^{-1})_{approx} \underline{\underline{H}}$ govern the convergence : the condition number can be changed. $(\underline{\underline{H}}^{-1})_{approx}$ often called a "pre-conditioner". 5) Generalisation to other optimization problems is trivial. (The Hessian is referred to as the Jacobian if it is not symmetric.)

JCLouvain

Modify the condition number (III)

Approximate Hessian can be generated on a case-by-case basis.

Selfconsistent determination of the Kohn-Sham potential :

Jacobian = dielectric matrix.

Lowest eigenvalue close to 1.

Largest eigenvalue :

= 1.5 ... 2.5 for small close-shell molecules, and small unit cell solids

(Simple mixing will sometimes converge with parameter set to 1 !)

= the macroscopic dielectric constant (e.g. 12 for silicon),

- forlarger close-shell molecules and large unit cell insulators,
- = diverge for large-unit cell metals, or open-shell molecules !

Model dielectric matrices known for rather homogeneous systems. Knowledge of approx. macroscopic dielectric constant

=> efficient preconditioner

Work in progress for inhomogeneous systems

(e.g. metals/vacuum systems).

UCLouvain

Advanced algorithms : using the history

Instead of using only previously computed forces, take into account past forces for past positions

Large class of methods :

- Broyden (quasi-Newton-type),
- Davidson,
- conjugate gradients,
- Lanczos ...

Approximate Hessian can be combined with usage of history

Stages in the main processing unit

CLouvain
In practice ...

(1) Kohn - Sham equation

$$\left[-\frac{1}{2}\nabla^2 + V_{KS}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$

Details are usually hidden to the user nline Note that scaling with size of system is quadratic or even cubic

(2) Self-consistency

CLouvain

Target tolerancetoldfe, toldff, tolrff, tolvrs+ Maximal number of loopsnstepPreconditionerdiemac, diemix, ...

$V_{KS}(\mathbf{r}) \qquad \psi_i(\mathbf{r})$

(3) Geometry optimization / molecular dynamics

Find the positions $\{\mathbf{R}_{\kappa}\}$ of ions such that the forces $\{\mathbf{F}_{\kappa}\}$ vanish

Target tolerancetolmxf+ Maximal number of loopsntimeAlgorithmionmov

Computing band structure and density of states

Non-self consistent calculations

- Once the density has been determined self-consistently, it is possible to compute the eigenenergies/eigenfunctions rapidly for a large number of wavevectors, at fixed KS potential
- Band structure :

non self-consistent calculation (iscf -2)
k-points along high-symmetry directions (kptopt<0; kptbounds; ndivk).</pre>

Density of states

• Density of states (DOS) defined as number of states available in energy range E to E+dE:

$$g(E) = \sum_{n} \frac{1}{\Omega_{0k}} \int_{\Omega_{0k}} \delta(E - \varepsilon_{nk}) dk$$

- Recipe : determine ε_{nk} on a grid of k-points in the BZ using a non self-consistent procedure (iscf -3).
- The δ -function is approximated by smeared-out function (typically a Gaussian) with a width σ (prtdos 1).
- Very fine grid of k-points needed to get sharp features accurately.
 For faster convergence, use tetrahedron method to interpolate between k-points (prtdos 2).

Example : SiO₂-quartz

binit

UCLouvain

DOS

Summary

- Plane waves basis set
- Brillouin zone integration
- PW need pseudopotentials
- Easy computation of forces

CLouvain

=> relaxation of geometry, or molecular dynamics

Jouvence, May 20, 2024

Beyond the basics

Symmetries in ABINIT

• Seitz notation for the symmetry operations of crystal :

• Applied to the equilibrium position vector of atom κ relative to the origin of the cell τ_{κ} , this symmetry transforms it as:

$$\{\mathbf{S} \mid \mathbf{v}(S)\} \tau_{\kappa} = \mathbf{S}\tau_{\kappa} + \mathbf{v}(S) = \tau_{\kappa'} + \mathbf{R}^{a} \\ \{S_{\alpha\beta} \mid \nu_{\alpha}(S)\} \tau_{\kappa\alpha} = S_{\alpha\beta}\tau_{\kappa\alpha} + \nu_{\alpha}(S) = \tau_{\kappa'\alpha} + R^{a}_{\alpha}$$

where R^a belongs to the real space lattice.

Dini

CLouvain

Documentation : abipy galleries

Web site➢ Plot gallery➢ Flow gallery

https://github.com/abinit/abipy http://abinit.github.io/abipy/gallery/index.html http://abinit.github.io/abipy/flow_gallery/index.html

ermi surface

Dielectric function with LFE

Eliashberg function

Band structure plot

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

Flow for phonons with DFPT

Gruneisen parameters

Joint Density of States

Bands + DOS

Projected phonon DOS

G0W0 Flow with convergence study wrt nband

Optic Flow

Jouvence, May 20, 2024

Documentation : abipy galleries

MgB2 Fermi surface

Dielectric function with LFE

Eliashberg function

Gruneisen parameters

Joint Density of States

Bands + DOS

Projected phonon DOS

Jouvence, May 20, 2024

Documentation : abipy galleries

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

Flow for phonons with DFPT

G0W0 Flow with convergence study wrt nband Optic Flow

Documentation : abitutorials

Web site

https://github.com/abinit/abitutorials

- Jupyter notebook : very fast execution of tutorial, so student can grap the whole story, then come back to details later
- Easier if familiarized with python
- Recent, 7 lessons available

Abinit + AbiPy Lessons

- <u>The H₂ molecule</u>
- <u>Crystalline silicon</u>
- Phonons, dielectric tensor and Born effective charges from DFPT
- G₀W₀ band structure
- Bethe-Salpeter equation and excitonic effects
- E-PH self-energy and T-dependent band structures
- Phonon linewidths and Eliashberg function of Al

Documentation : central ABINIT doc

Web site https://docs.abinit.org Based on markdown+mkdocs

User's guide + Installations notes

binit

UCLouvain

- List of topics, input variables, tutorial (>30 lessons)
- Theory documents including bibliography
- > >1000 example input files + reference output (from test set)

