
Center for Computational Quantum Physics (CCQ),  
Flatiron Institute, Simons Foundation 

New York 
 

1

Quantum Embeddings, 

Dynamical Mean Field Theory:

an introduction. Part II

Olivier Parcollet



• Introduction

• Mott transition

• Quantum impurity models

• DMFT: basic formalism

• The Mott transition in DMFT.

• Towards realism: Hund’s metal 

• Cluster extensions of DMFT.

• Quantum impurity solvers: an overview.

• Two particle quantities: susceptibilities, transport.

• Outlook

2Outline (part I & II)



3

G�imp(⌧) ⌘ �
⌦
Tc�(⌧)c

†
�(0)

↵
Seff

DMFT recap

• A quantum impurity model

Se↵ = �
ZZ �

0
d⌧d⌧ 0c†�(⌧)G�1

� (⌧ � ⌧ 0)c�(⌧
0) +

Z �

0
d⌧ Un"(⌧)n#(⌧)

• Bethe lattice/semicircular dos. • General lattice

G�imp[G](i!n) =
X

k

1

i!n + µ� ✏k � ⌃�imp[G](i!n)

⌃�imp[G](i!n) ⌘ G�1
� (i!n)�G�1

�imp[G](i!n)

<latexit sha1_base64="VGnYivDlDlHszhqWrRXEvX0jQPs="></latexit>

G�1
� (i!n) = i!n + µ� t2G�imp(i!n)| {z }

��(i!n)

• In a self consistent bath



• Several orbitals (indices )a, b

4Beyond Hubbard model

Orbital indices

<latexit sha1_base64="P4UnzmIgqkVQqDUpcD2XEw01V0A="></latexit>

H = �
X

hijiab

(tij)abc
†
i�aci�b +

X

i

Hint({c†i�a, ci�a})

• Hopping is a matrix in orbital indices  

• The interaction will be more complex than density-density interactions.

• A first step toward realism (still a tight-binding model, cf DFT + DMFT later to use Wannier)
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•  are matrices in the orbital spaceG, Σ, Δ

5Multi-orbital DMFT
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• For fully symmetric model with N orbitals, density-density interaction.

• Similar to N=1.

6Difference with 1 orbital case

Uc1 ⇠
p
N Uc2 ⇠ N

ance of the insulating solution at Uc1, the behavior of
the gap at this point, and the value of Uc1 have not yet
been fully settled.

In summary, the existence of two classes of solutions
of the paramagnetic LISA equations at zero tempera-
ture can be established analytically. Metallic solutions
are characterized by a nonzero density of states r(0)
=D(0) [=2/(pD) for the Bethe lattice], while insulating
solutions have r(0)=0, for both the impurity and the ef-
fective conduction bath at zero frequency. The density of
states at zero energy is an order parameter for this prob-

lem, and can be shown to be self-consistently nonzero
for small U/D and zero for large U/D .

D. Phase diagram and thermodynamics

1. Paramagnetic phases

The qualitative distinction between a metal and an
insulator is precise at zero temperature. At finite but
small temperatures a sharp distinction between a metal-
lic and an insulating solution can still be made in the
present problem, since a region of the (U ,T) parameter
space defined by Uc1(T),U,Uc2(T) is found where
two paramagnetic solutions are allowed within the
LISA, as shown on Fig. 33 (Georges and Krauth, 1993;
Rozenberg, Kotliar, and Zhang, 1994). This is evidenced
by the plot of the double occupancy ^n"n#& given in Fig.
34. One of these solutions is continuously connected to
the T=0 metallic solution, and its density of states dis-
plays a peaklike feature at the Fermi energy. The other
solution can be connected to the T=0 insulating solution,
and the Green’s function extrapolates to zero at zero
frequency. As the temperature is further increased, this
region of coexistent solutions disappears and we are left
with a rapid crossover from a metallic-like solution to an
insulating-like one. This is possible because at finite tem-
perature there is no qualitative distinction between a
metallic and an insulating state. The two lines Uc1(T)
and Uc2(T) defining the coexistence region merge at a
second-order critical point (Fig. 33). The actual metal-
insulator transition at finite temperature is first order,
and takes place at the coupling Uc(T) where the free
energy of the two solutions cross. Note that this is the
case even though no lattice deformations have been in-
cluded in the model. For early discussions of the occur-
rence of a first-order metal-insulator transition at finite
temperature in the Hubbard model, see the works of
Cyrot (1972); Castellani, DiCastro, Feinberg, and Ran-
ninger (1979); Spalek, Datta, and Honig, 1987); Spalek

FIG. 31. Real and imaginary parts of the self-energy S(v+i0+),
as obtained from the iterated perturbation theory approxima-
tion, for a value of U/D=4 in the insulating phase. The inset
contains the same quantities on a larger scale that shows the
1/v singularity in ReS.

FIG. 32. Paramagnetic gap (solid line) as a function of the
interaction U obtained from exact diagonalization. For com-
parison, the corresponding results from iterated perturbation
theory (dotted line) and the value of Uc1

H III 5 )D within the
Hubbard III approximation (diamond) are also shown.

FIG. 33. Phase diagram of the fully frustrated model at half-
filling. It is possible to move continuously from one phase to
the other since at high temperature the transition becomes a
crossover. Within the region delimited by the dashed lines, the
metallic and insulating solutions coexist. The full line is the
approximate location of the actual first-order transition line.
Both ends of this line [at the full square and at Uc2(T)=0] are
second-order points.
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insulator transition depends on the number of orbitals.
Our findings on the critical couplings are in agree-

ment with early QMC results for the two-orbital model
(N = 4) [21], and with recent results for higher values of
N [22]. A widening of the coexistence window [Uc1, Uc2]
as N increases is clearly seen in these simulations. Also,
for fixed N , the critical coupling required to enter the
Mott state is largest [18] at the particle-hole symmetric
filling n = 1/2. The present work also puts the results
of Refs.[19, 20] in a new perspective: there, a

√
N scal-

ing of the critical coupling was proposed. We find that
this indeed applies to the coupling where the insulator
becomes unstable (Uc1), while the true T = 0 Mott tran-
sition (at which the quasiparticle residue vanishes) takes
place at Uc2 ∝ N . Indeed, in Ref.[19], the

√
N scal-

ing was rationalized on the basis of a stability argument
for the insulator. Finally, the rather high temperatures
considered in [20] explain why only the

√
N dependence

was reported there: distinguishing Uc2 from Uc1 requires
significantly lower temperatures [22].

The limit of large orbital degeneracy is relevant to the
physics of systems with partially filled d- or f- shells,
as well as to fullerenes. Direct numerical approaches
become prohibitively difficult as the number of orbital
increases (QMC methods scale as a power law of N ,
while exact diagonalizations [17] scale exponentially). It
is therefore important for future research to develop ap-
proximate but accurate impurity solvers which can han-
dle many orbitals. The controlled results that we estab-
lish in this paper can be used as tests of these approxi-
mation methods.

II. MULTI-ORBITAL HUBBARD MODEL

We consider a generalized Hubbard model involving N
species of electrons, with Hamiltonian:

H = −
∑

i,j

N∑

σ=1

tijd
†
iσdjσ +

U

2

∑

i

[
N∑

σ=1

(
d†iσdiσ − n

)]2

− µ̃
∑

i

N∑

σ=1

d†iσdiσ (1)

where i, j are sites indices, σ the orbital index, µ̃ is the
chemical potential and n the average density of particles
per species :

n =
1

N

∑

σ

⟨ d†iσdiσ⟩ (2)

Introducing n in the Hamiltonian is just a convention for
the chemical potential µ̃. In particular, it is convenient
at half-filling where the particle-hole symmetry implies
n = 1

2 and µ̃ = 0. For a single site (atom), the spectrum
consists of N+1 levels, with energies U

2 (Q−nN)2 depend-
ing only on the total charge on the orbital: Q = 0, · · · , N
and with degeneracies

(N
Q

)
.

The usual single-orbital Hubbard model corresponds to
N = 2 (σ =↑, ↓). The Hamiltonian considered here has
a full SU(N) symmetry which includes both spin and or-
bital degrees of freedom. Starting from a more realistic
model which assumes an interaction matrix Umm′ be-
tween opposite spins and Umm′ − Jmm′ between parallel
spins, it corresponds to the limit of isotropic Umm′ = U
and vanishing Hund’s coupling Jmm′ = 0.

When U is large enough, we expect a Mott insulating
state to exist at fillings n = Q/N , corresponding to an in-
teger occupancy of each site on average Q = 1, · · · , N−1.
In this paper, we investigate analytically the nature of
these Mott transitions within DMFT. We consider only
phases with no magnetic ordering and study the transi-
tion between a paramagnetic metal and a paramagnetic
Mott insulator. In Section III, we extract the large-N
behaviour of Uc1 and Uc2 using the low-energy projective
technique analysis of the DMFT equations introduced in
[12] for N = 2 and extended in [23] : we show that the
equations for the Uc’s derived by this method are greatly
simplified for N → ∞ in the sense that an atomic limit
becomes exact. In section IV, we find quantitative agree-
ment between these results and a multiorbital slave boson
method. Finally, in Sec.V, we consider the Mott transi-
tion at finite temperature.

III. LARGE-N BEHAVIOUR OF Uc1 AND Uc2

A. DMFT and the low-energy projective method

Let us recall briefly the DMFT equations and their
low-energy projective analysis [12, 13]. DMFT maps the
lattice Hamiltonian above onto a multi-orbital Anderson
impurity model with the same local interaction term than
in (1) and a hybridization function ∆(iωn). The local
Green’s function reads: Gd(iωn)−1 = iωn + µ̃−∆(iωn)−
Σd(iωn). In this expression, µ̃ is the chemical potential
(shifted by the Hartree contribution) and Σd(iωn) is a
local self-energy. A self-consistency requirement is im-
posed, which identifies Gd(iωn) with the on-site Green’s
function of the lattice model with the same self-energy
Σd(iωn). This reads:

Gd(iωn) =

∫
dε

D(ε)

iωn + µ̃ − ϵ− Σd(iωn)
(3)

In this expression, D(ε) is the free electron density of
state (d.o.s.) corresponding to the Fourier transform of
the hopping matrix elements tij . In the particular case
of a semi-circular d.o.s. with half-width D = 2t, equa-
tion (3) simplifies to:

∆(iωn) = t2 Gd(iωn) (4)

Solving the impurity model subject to (3) determines
both the hybridization function and the local Green’s
function in a self-consistent manner. In order to give
an explicit Hamiltonian form to the Anderson impurity

S. Florens et al. 2002

• But interactions are more complex in real materials

• Hund’s coupling, crystal field, spin-orbit,…

• New physical phenomena !
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many-body atomic hamiltonian for t2g states takes the Kanamori form [29] :

HK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�J
X

m 6=m0

d+m"dm# d
+

m0#dm0" + J
X

m 6=m0

d+m"d
+

m# dm0#dm0" (2)

The first three terms involve only density-density interactions, between electrons with opposite

spins in the same orbital (U), opposite spins in di↵erent orbitals (U 0 < U) and parallel spins in

di↵erent orbitals. The latter case has the smallest coupling U 0 � J , reflecting Hund’s first rule.

For later use, it will be useful to consider a generalization of this Kanamori multi-orbital hamil-

tonian to a form in which all coupling constants are independent:

HGK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0# + (U 0 � J)
X

m<m0,�

n̂m�n̂m0� +

�JX
X

m 6=m0

d+m"dm# d
+

m0#dm0" + JP
X

m 6=m0

d+m"d
+

m# dm0#dm0" (3)

Defining the total charge, spin and orbital isospin generators (~⌧ are the Pauli matrices):

N̂ =
X

m�

n̂m� , ~S =
1

2

X

m

X

��0

d†m�~⌧��0dm�0 , Lm = i
X

m0m00

X

�

✏mm0m00d†m0�dm00�, (4)

the generalized Kanamori hamiltonian (3) can be rewritten as:

HGK = 1

4
(3U 0 � U)N̂(N̂ � 1) + (U 0 � U)~S2 + 1

2
(U 0 � U + J)~L2 + (7

4
U � 7

4
U 0 � J)N̂ +

+(U 0 � U + J + JP )
P

m 6=m0 d+m"d
+

m# dm0#dm0" + (J � JX)
P

m 6=m0 d+m"dm# d
+

m0#dm0" (5)

It thus has full U(1)C ⌦ SU(2)S ⌦ SO(3)O symmetry provided JX = J and JP = U � U 0 � J ,

in which case the hamiltonian reduces to the first line in Eq. (5). We shall loosely refer to such

symmetry as ‘rotational invariance’. Note that rotational invariance of HGK does not imply that

U 0 and U are related. In particular for JX = J and U 0 = U � J (JP = 0), one obtains a minimal

rotationally-invariant hamiltonian (U � 3J/2)N̂(N̂ � 1)/2� J ~S2 involving only N̂2 and ~S2, to be

discussed in more details below (Eqs. (12) and (27)). This actually holds for an arbitrary number

M of orbitals.

Using (5), the physical t2g hamiltonian (2) which has JX = JP = J is seen to be rotationally

invariant provided:

U 0 = U � 2J (6)

in which case the hamiltonian takes the form:

Ht2g = (U � 3J)
N̂(N̂ � 1)

2
� 2J ~S2 � J

2
~L2 +

5

2
J N̂ (7)

In this form, Hund’s first two rules (maximal S, then maximal L) are evident. The spectrum of

this hamiltonian is detailed in Table 1.

Condition (6) is realized if U,U 0, J are calculated assuming a spherically symmetric interaction

and the t2g wave-functions resulting from simple crystal-field theory. In this approximation, these

• Relevant for a class of materials,  
e.g. 3d, 4d transition metal oxides

• For  (3 bands), cubic symmetry.

• Spherical symmetry : 

• More complex  for more orbitals, less symmetry 
e.g. Slater …

t2g

U′ = U − 2J

H

Lowering further the crystal symmetry (distort from cubic) 
Induces additional lifting of degeneracy 

Tetrahedral environment (MO4):  
eg has lower energy, t2g higher 

Two orbitals  
 m, m′ 



8J : Hund’s coupling

• Symmetry case ,   orbitalsU′ = U − 2J t2g

considers in detail the case of two orbitals and an eg doublet. For both eg and t2g, there are only
three independent Coulomb integrals, which are matrix elements of the screened Coulomb in-
teraction in appropriately chosen wave functions of the t2g orbitals in the solid:

U ¼
Z

drdr0jfmðrÞ j
2Vcðr, r0Þjfmðr0Þ j

2,

U0 ¼
Z

drdr0jfmðrÞ j
2Vcðr, r0Þjfm0ðr0Þ j2, and

J ¼
Z

drdr0fmðrÞfm0ðrÞVcðr, r0Þfmðr0Þfm0ðr0Þ.

1:

Indeed, the wave functions can be chosen real-valued [so that the spin-exchange and pair-hopping
integrals are equal (J¼ J0)], and all other terms in the interaction tensor, e.g., of the type Ummmm0,
vanish by symmetry in this case. Because there are no other exchange integrals involved, the full
many-body atomic Hamiltonian for t2g states takes the Kanamori form (29):

HK ¼ U
X

m
bnm↑bnm↓ þU0

X

m!m0

bnm↑bnm0↓ þ ðU0 % JÞ
X

m<m0,s

bnmsbnm0s þ

%J
X

m!m0

d†m↑dm↓d
†
m0↓dm0↑ þ J

X

m!m0

d†m↑d
†
m↓dm0↓dm0↑.

2:

The first three terms involve density-density interactions only between electrons with opposite
spins in the same orbital (U), opposite spins in different orbitals (U0 < U), and parallel spins in
different orbitals. The latter case has the smallest coupling U0 % J, reflecting Hund’s first rule.

It is useful to consider a generalization of this Kanamori multiorbital Hamiltonian to a form in
which all coupling constants are independent:

HGK ¼ U
X

m
bnm↑bnm↓ þU0

X

m!m0

bnm↑bnm0↓ þ ðU0 % JÞ
X

m<m0,s

bnmsbnm0s þ

%JX
X

m!m0

d†m↑dm↓d
†
m0↓dm0↑ þ JP

X

m!m0

d†m↑d
†
m↓dm0↓dm0↑.

3:

Defining the total charge, spin and orbital isospin generators ( t! are the Pauli matrices)

bN ¼
X

ms

bnms, S
! ¼ 1

2

X

m

X

ss0

d†ms t!ss0dms0 , Lm ¼ i
X

m0m00

X

s

emm0m00d†m0sdm00s, and 4:

the generalized Kanamori Hamiltonian (Equation 3) can be rewritten as

HGK ¼ 1
4
ð3U0 %UÞbN

!
bN % 1

"
þ ðU0 %UÞ S!

2
þ 1

2
ðU0 %U þ JÞL!

2
þ
#
7
4
U % 7

4
U0 % J

$
bNþ

þðU0 %U þ J þ JPÞ
X

m!m0d
†
m↑d

†
m↓dm0↓dm0↑ þ ðJ % JXÞ

X
m!m0d

†
m↑dm↓d

†
m0↓dm0↑. 5:

It thus has full U(1)C Ä SU(2)S Ä SO(3)O symmetry provided JX ¼ J and JP ¼ U % U0 % J, in
which case the Hamiltonian reduces to the first line in Equation 5. We refer loosely to such
symmetry as rotational invariance. Rotational invariance ofHGK does not imply thatU0 andU are
related. In particular, for JX ¼ J and U0 ¼ U % J (JP ¼ 0), one obtains a minimal, rotationally

invariantHamiltonian ðU % 3J=2ÞbNðbN % 1Þ=2% J S
!2

, involvingonly bN
2
and S

!2
,whichwediscuss

inmoredetail below (Equations12and27).This actuallyholds for anarbitrarynumberMoforbitals.
The physical t2g Hamiltonian (Equation 2) has JX ¼ JP ¼ J and, using Equation 5, is seen to be

rotationally invariant, provided
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U0 ¼ U " 2J, 6:

in which case the Hamiltonian takes the form

Ht2g ¼ ðU " 3JÞ
bN
!
bN " 1

"

2
" 2JS

!2
" J
2
L
!2

þ 5
2
J bN. 7:

In this form,Hund’s first two rules (maximal S, then maximal L) are evident. The spectrum of this
Hamiltonian is detailed in Table 1.

Equation 6 holds in particular when U, U0, and J are calculated assuming a spherically
symmetric interaction and t2g wave functions from simple crystal-field theory. In this approxi-
mation, these integrals can be expressed in terms of Slater parameters F0, F2, F4 (or alternatively
Racah parameters A, B, C) (30):

U ¼ F0 þ 4
49

F2 þ 4
49

F4 ¼ Aþ 4Bþ 3C,

U0 ¼ F0 " 2
49

F2 " 4
441

F4 ¼ A" 2Bþ C ¼ U " 2J, and

J ¼ 3
49

F2 þ 20
441

F4 ¼ 3Bþ C.

8:

A rotationally invariant form of the t2g Hamiltonian is obtained when assuming spherical
symmetry because the orbital angular momentum in the t2g states is only partially quenched, from
l ¼ 2 down to l ¼ 1. The orbital isospin generators are thus closely related to those of angular
momentumwith l¼ 1 (up to a sign; cf. Reference 30). In the solid state,Vc is the screenedCoulomb
interaction. The spherical symmetry of Vc is of course no longer exact but often considered to be
a reasonable approximation so that U0 ¼ U " 2J is often used in the solid as well.

For an entire d-shell, theKanamoriHamiltonian (Equation 2) is not exact, and a full interaction
tensor Um1m2m3m4 must be considered. For an isolated atom with spherical symmetry, this tensor
can be parametrized in terms of three independent Slater (Racah) parameters F0, F2, F4, whereas
nine parameters are needed in principle in cubic symmetry (30). A word of caution is in order

Table 1 Eigenstates and eigenvalues of the t2g Hamiltonian U bNðbNL1Þ=2L2JS
!2

L J L
!2

=2 in the
atomic limit (U ” U L 3J)a

N S L Degeneracy 5 (2S 1 1) (2L 1 1) Energy

0, (6) 0 0 1 0, [15U]

1, (5) 1/2 1 6 "5J/2, [10U " 5J/2]

2, (4) 1 1 9 U " 5J, [6U " 5J]

2, (4) 0 2 5 U " 3J, [6U " 3J]

2, (4) 0 0 1 U, [6U]

3 3/2 0 4 3U " 15J/2

3 1/2 2 10 3U " 9J/2

3 1/2 1 6 3U " 5J/2

aThe boxed numbers identify the ground-state multiplet and its degeneracy for J > 0.

142 Georges ∙ de’ Medici ∙ Mravlje

• Hund’s rules (“align spins in different orbitals”) 

• Maximal S

• Maximal angular momentum L
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Figure 2: Critical coupling separating the metallic and Mott insulating (paramagnetic) phase, as

a function of Hund’s coupling, for a Hubbard-Kanamori model of three degenerate bands with one

(red), two (green) and three (blue) electrons per site. The model is solved with DMFT, with a

semi-circular density of states of bandwidth 2D for each band. Dashed lines indicate the atomic-like

estimates (see text). The shaded region corresponds to U 0 � J < 0 (J > U/3). See Refs. [21, 22].

increases rapidly with orbital degeneracy M d. In contrast fW is renormalized downwards as J is

turned on, and a value fWM,M ⇠ fW1,1 ⇠ W (with W the bare bandwidth) is reached already at

moderate values of J , leading to Uc ⇠ W + (M � 1)J(L. de’Medici & M. Capone, in preparation),

as clear from Fig. 2, with only a weak dependence on orbital degeneracy in the presence of a finite

J e

For generic filling levels, the reduction of the kinetic energy by orbital blocking is responsible for

the decrease of Uc at small J , while the reduction of the atomic Ue↵ is responsible for the increase

of Uc at large J , hence the non-monotonous behaviour. In contrast for a single electron or hole,

the orbital blocking does not apply because the Hund’s rule coupling does not lift the degeneracy

of the atomic ground-state.

Finally, we note that at J = 0, the largest value of Uc is obtained at half-filling N = M and the

smallest one for a single electron (or hole) N = 1, 2M�1. This is reversed at moderate and large J ,

with Uc smallest for a half-filled shell (Fig. 1). Because of this e↵ect, an insulating state is strongly

favoured at half-filling. Indeed, most transition-metal oxides with a half-filled shell are insulators

(e.g. SrMnO3 , LaCrO3 with three electrons in the t2g states, see Sec. 6.2). The reduction of the

dWithin DMFT, the Mott-Hubbard gap-closing transition occurs at Uc1(J = 0) /
p
M and the Brinkman-Rice

transition where the quasiparticle weight vanishes at Uc2 / M , see Ref. [42].
eAccordingly, the coexistence region [Uc1, Uc2] is strongly reduced by J [43].

• Hund’s coupling  has 2 effects

• High energy effect: Mott gap from the atomic levels (analogous to previous analysis)

J

• J enhances   
away from half-filling 

• J reduces   
at half-filling 

Uc
(N = 1,2)

Uc
N = 3

Cf  A.Georges, G. Kotliar, Physics Today, April 2024 
     review A. Georges. L. De Medici, J. Mravlje, arXiv:1207.3033

DMFT, Bethe lattice, M=3 bands, fillings N =1,2,3 
  from  arXiv:1207.3033



• Low energy effect of J (N=2):

• Reduce the coherence 
temperature, Z.
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Figure 1: Colour intensity map of the ‘degree of correlation’ (as measured by the quasiparticle

weight Z - right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the description

of early transition-metal oxides with a partially occupied t2g shell. The vertical axis is the interaction

strength U normalized to the half-bandwidth D, and a finite Hund’s coupling J = 0.15U is taken

into account. The horizontal axis is the number of electrons per site - from 0 (empty shell) to

6 (full shell). Darker regions correspond to good metals and lighter regions to correlated metals.

The black bars signal the Mott-insulating phases for U > Uc. The arrows indicate the evolution of

Uc upon further increasing J , and emphasize the opposite trend between half-filling and a generic

filling. Crosses denote the values of Uc for J = 0. One notes that, among integer fillings, the

case of 2 electrons (2 holes) displays correlated behaviour in an extended range of coupling, with

‘spin-freezing’ above some low coherence scale. Specific materials are schematically placed on the

diagram. The materials denoted in black have been placed according to the experimental value of

�/�LDA. For detailed explanations, see Sec. 6. The DMFT calculations leading to a related plot in

Ref. [22] have been repeated here using a more realistic DOS for t2g states (inset).

Coulomb interactions in the multi-orbital context is provided. In Sec. 3 the influence of Hund’s

coupling on the intra-atomic charge gap and the Mott critical coupling is explained. Sec. 4 reviews

the influence of Hund’s coupling on the Kondo temperature of a multi-orbital impurity atom in

a metallic host. Sec. 5 briefly introduces dynamical mean-field theory, which provides a bridge

between single-atom physics and the full solid. Sec. 6 is the core part of this article, in which the

key e↵ects of the Hund’s rule coupling in the solid-state context are put together. Sec. 7 and Sec. 8

consider ruthenates and iron pnictides/chalcogenides, respectively, in the perspective of Hund’s

metals.

Strongly correlated 
metal far from Mott transition

10Hund’s metals

rule coupling for a half-filled shell, and diminished for a
singly occupied one.

In contrast, we find that the Hund’s rule coupling has a
more complex influence in the case of two electrons (or
two holes) in 3 orbitals. On the one hand, the critical
coupling Uc is strongly increased (and the Mott gap re-
duced) at the largest values of J=U. As a result, the range of
coupling U=D with metallic behavior is enlarged as com-
pared to the case with J ¼ 0. On the other hand, for a wide
range of coupling strengths, Z is suppressed upon increas-
ing J [7,12,13]. To accommodate these antagonistic ef-
fects, Z displays a long tail as a function of U. The small
values of Z found there indicate a very low quasiparticle
coherence scale T", below which the system is expected to
show a conventional Fermi liquid physics. An incoherent
regime with a Curie-like magnetic response [3] and bad-
metal behavior [3,7] is found for temperatures above T"
(see the supporting material [14]). This was reported in
Ref. [3] and coined ‘‘spin-freezing’’ regime. These consid-
erations are not specific to 2 electrons in 3 orbitals: the
Hund’s coupling is ‘‘Janus-faced’’ for N electrons in M
degenerate orbitals, except for a singly occupied or half-
filled band, as summarized in Table. I.

We calculated also away from integer fillings and dis-
play the data as a contour plot of the quasiparticle weight as
a function of coupling strength U=D and band filling, for a
fixed typical value of the ratio J=U (Fig. 2). The extended
region of strongly correlated bad-metallic behavior (small
Z) aroundN ¼ 2 appears clearly. In contrast, the half-filled

case favors insulators (except at weakU=D) and the single-
electron case favors good metals (except at strong U=D).
These numerical results can be corroborated and ex-

plained by analytical considerations in the simplified lim-
its. In order to understand the influence of J on the Mott
gap, we start from the limit of an isolated atom. The charge
gap !at ¼ EatðN þ 1Þ þ EatðN & 1Þ & 2EatðNÞ takes two
different values depending on whether the relevant orbitals
are half-filled or not: !at ¼ U& 3J for N <M or N >M
and !at ¼ Uþ ðM& 1ÞJ for N ¼ M. Including hopping
perturbatively leads to a correction!Mott¼!at&cDþ''' ,
where c is of order unity. Hence, we see that the Mott gap is
increased by J (and Uc decreased) at half-filling [9,10],
while it is decreased in all other cases [4,8,15]. This
localized limit explains the distinction between N ¼ 3
and N ¼ 1 (and the insulating side of N ¼ 2) but does
not account for the bad-metal, small-Z, part of the phase
diagram around N ¼ 2.
To understand this regime we consider the itinerant

limit. Studying a correlated metallic phase within DMFT
translates mainly in characterizing the coherence scale of
the effective impurity problem (self-consistent atom). Here
we focus on how it is affected by the Hund’s coupling.
The key distinction between different cases is the degen-
eracy of the atomic ground state which is, except for a
single electron or hole, reduced by J, as the state with
aligned angular momenta is selected (Table S1 in the
supporting material [14]). Lower degeneracy enhancing
the quantum fluctuations and weaker tunneling from or

TABLE I. The effects of an increasing Hund’s rule coupling on the degree of correlations.

Number N of electrons
in M orbitals

Degeneracy
of atomic ground state Mott gap Correlations

Materials behavior
promoted by J

one electron or one hole (N ¼ 1, 2M& 1) unaffected reduced diminished metallic

half-filled (N ¼ M) reduced increased increased insulating

All other cases reduced reduced Conflicting effect bad metallic
(N ! 1, M, 2M& 1) (see text)

FIG. 1 (color online). Quasiparticle weight Z vs U for N ¼ 1, 2, 3 electrons in M ¼ 3 orbitals. The grey arrows indicate the
influence of an increasing Hund’s rule coupling J=U.
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THE  HUND- METAL PATH

and George Sawatzky11 and by Fujimori and colleagues.7
In metals, additional excitations, called Landau quasiparti-

cles, exist at low energy. Those quantum states are waves with 
a well- defined momentum that are delocalized throughout the 
solid. The occupied and unoccupied states are separated by a 
boundary in momentum space known as the Fermi surface. 
Interactions can strongly reduce the velocity of the quasiparti-
cle states near the Fermi surface, which enhances the effective 
mass of the excitations. 

The quasiparticle weight Z is the probability of an electron 
being in a quasiparticle state when it is removed from (or 
added to) the ground state of the solid, as probed in photo-
emission. In a weakly correlated material, most of the exci-
tations are quasiparticles, and Z is close to unity (see figure 2). 
A small value of Z thus is an indication of strong correlations. 
In metals close to the Mott- insulator transition, quasiparticles 
emerge between Hubbard bands. But in Hund metals, the qua-
siparticle excitations emerge from overlapping Hubbard 
bands, as shown in figure 1b.

Dynamical mean- field theory
For strongly correlated materials, a serious revision of the 
“standard model” of solid-state physics, which focuses solely 
on quasiparticles, is needed.  Instead of adding correlations to 
an electron gas,  a  proper description of  a correlated solid  begins  
with  the many-body eigenstates (so-called atomic multiplets) 
of individual atoms, which constitute a sizeable part of the 
excitation spectra at energies up to several electron volts. 

Think of a strongly correlated material as a collection of 
atomic many-body systems that exchange electrons. That per-
spective is central to dynamical mean-field theory (DMFT). For 
reviews, see reference 12 and the article by one of us (Kotliar) 

and Dieter Vollhardt, Physics Today, March 2004, page 53.
DMFT focuses on the sequence of quantum jumps between 

electronic configurations of the atoms as electrons hop between 
them. It describes that process as the emission and absorption 
of electrons between an atom and an effective self-consistent 
bath representing the rest of the solid. The theory details  
whether, how,  and when quasiparticles then emerge at low 
energy.  In Sr2RuO4, for example, Landau’s Fermi-liquid re-
gime—characterized by long-lived, coherent quasiparticles—is 
formed only below a temperature TFL ~ 25 K, which corre-
sponds to an energy scale of about 2 meV. 

Hund metals
Figure 2 illustrates three metallic regimes: a weakly correlated 
metal with Z close to unity and two strongly correlated metals 
with a small value of Z—one in the Mott regime and one in the 
Hund- metal regime. When the Hund coupling is sizable and 
the shell is neither singly occupied nor half filled, the depen-
dence of Z on Ueff exhibits a plateau. Hence an extended regime 
displays strong correlations while the system is not close to the 
Mott metal– insulator transition.

The Hund coupling is two- faced: On the one hand, it pushes 
the Mott transition to larger values of U; on the other hand, it 
leads to an extended, strongly correlated metallic regime by 
decreasing Z and enhancing the quasiparticle effective mass.5

A useful diagnostic of the different regimes is a histo-
gram of the relative weights associated with each atomic 
configuration in the ground state of a given material. It is 
what an observer embedded in the solid at a given atomic 
site would record by measuring the time that an atom 
spends in each atomic configuration. As depicted in figure 
2, the histogram for a weakly correlated metal extends over 

Superconductor
high-Tc

Fe-SCs

Superconductor
low-Tc

Sr2RuO4

Magnetism
low-Tc

Sr2Ru1-xTixO4

Magnetism
high-Tc

SrRuO3

Other
orders

Other
orders

Nematic
FeSe

OSMP 
(orbital-
selective

Mott phase)
FeSe/Te

Spin–orbital separation

Fermi liquid

Low
energy

High
energy

Tsp

Torb

Atom

FIGURE 3. EVOLUTION of a material’s 
active degrees of freedom as a function 
of energy. It goes from a high-energy 
regime (top), in which atoms fluctuate 
between different atomic configurations, 
to a low- energy regime (bottom), in 
which coherent quasiparticle excitations 
emerge. The dynamical mean- field 
description of the process is depicted 
here as an onion- like sequence of 
effective energy shells added to the 
isolated atom, pictured at top. In Hund 
metals, the quenching of orbital and of 
spin fluctuations occurs at distinct 
temperatures Torb and Tsp, respectively. 
Between Torb and Tsp, the spin– orbital 
separated regime, the orbitals are 
quenched but a higher spin (S = 3⁄2 here) 
remains. At low energy, the so- called 
Fermi-liquid regime, all orbitals and spin 
states are effectively filled by an equal 
number of electrons so that the atomic 
degrees of freedom no longer fluctuate. 
A large diversity of  symmetry- breaking 
instabilities and long- range orders, such 
as superconductivity and magnetism, 
may emerge out of either regime.
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From A.Georges, G. Kotliar, Physics Today, April 2024

Non Fermi liquid metal  
  with fluctuating spins 
No orbital fluctuations

Incoherent

Fermi liquid

Torb
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• Spin/orbital fluctuates on different scales.

• Renormalization group picture.

• DMFT : an effective Kondo problem
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Figure 5: Composite-spin Kondo model (Eq. 17). (a) Schematic behavior of the running coupling

constant ge↵ = JK(⇤)⇢Me↵ with Me↵ = 1 in region I and ge↵ = M in regions II and III. The

boundary between I and II is at the scale of Hund’s coupling. The Kondo temperature is reduced

due to the slower scaling in region II. (b) Schematic dependence of the e↵ective moment. The large

moment formed in region II is screened at a reduced temperature scale. Reproduced from Ref. [13].

channels are decoupled, followed by a second stage in which a large spin is formed and eventually

screened at a low energy scale. However, it is not guaranteed that this two-stage process does

apply in general, and a direct route may apply instead (dashed arrow on Fig. 3). Indeed, in the

original model, at large scales ⇤ > J , the RG flow goes as in the SU(2M) symmetric model. For

⇤ . J , the quenching of the orbital fluctuations and the emergence of the high-spin state occur

simultaneously. There is no energy scale at which the system is represented by M independent

spins undergoing single-channel Kondo scaling. As a result, expression (18) for the reduction of TK

at intermediate J for the CSK model cannot be trusted in general for the original model (12,13)

or the Coqblin-Schrie↵er-Hund model. Indeed, the poor man’s scaling study of Ref.[57] for M = 2

reproduced in Fig. 3 suggests a 1/J2 dependence, instead of 1/J as in (18) while NRG studies by

one of us (J.M., unpublished) yield an even stronger power-law. NRG studies of the Dworin-Narath

model (12,13) were also performed in Refs. [59,50] and an exponential dependence of TK on J was

reported. We expect that this is because rather small values of J were explored there, and that

an initial exponential suppression followed by a power-law at larger J is the generic behaviour, as

Now well understood from a Renormalization Group 
perspective, cf. recent work by von Delft, Lee, Weichselbaum et al., 
Aron, Kotliar et al., Horvat, Žitko, Mravlje, Kugler et al.,



• Mott physics; 

• Hund metals; 

• Heavy fermions. Orbitally selective Mott phase. 
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12Different routes to correlations

Custers et al (CP), Nature 2003

magnetic order heavy Fermi liquid

Resistivity linear on 3 decades of energy

 Heavy fermions
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Figure 1: Colour intensity map of the ‘degree of correlation’ (as measured by the quasiparticle

weight Z - right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the description

of early transition-metal oxides with a partially occupied t2g shell. The vertical axis is the interaction

strength U normalized to the half-bandwidth D, and a finite Hund’s coupling J = 0.15U is taken

into account. The horizontal axis is the number of electrons per site - from 0 (empty shell) to

6 (full shell). Darker regions correspond to good metals and lighter regions to correlated metals.

The black bars signal the Mott-insulating phases for U > Uc. The arrows indicate the evolution of

Uc upon further increasing J , and emphasize the opposite trend between half-filling and a generic

filling. Crosses denote the values of Uc for J = 0. One notes that, among integer fillings, the

case of 2 electrons (2 holes) displays correlated behaviour in an extended range of coupling, with

‘spin-freezing’ above some low coherence scale. Specific materials are schematically placed on the

diagram. The materials denoted in black have been placed according to the experimental value of

�/�LDA. For detailed explanations, see Sec. 6. The DMFT calculations leading to a related plot in

Ref. [22] have been repeated here using a more realistic DOS for t2g states (inset).

Coulomb interactions in the multi-orbital context is provided. In Sec. 3 the influence of Hund’s

coupling on the intra-atomic charge gap and the Mott critical coupling is explained. Sec. 4 reviews

the influence of Hund’s coupling on the Kondo temperature of a multi-orbital impurity atom in

a metallic host. Sec. 5 briefly introduces dynamical mean-field theory, which provides a bridge

between single-atom physics and the full solid. Sec. 6 is the core part of this article, in which the

key e↵ects of the Hund’s rule coupling in the solid-state context are put together. Sec. 7 and Sec. 8

consider ruthenates and iron pnictides/chalcogenides, respectively, in the perspective of Hund’s

metals.

T/W

DMFT can be applied to all of them
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Cluster extensions of DMFT



• A small cluster of atoms instead of 1 atom OR patches in the Brillouin zone for Σlattice(k, ω)

14Idea

Reciprocal space (DCA) 
Brillouin zone patching 
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic

Hettler et al. ’98, ...

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Real space (CDMFT)

Lichtenstein, Katsnelson 2000 
Kotliar et al. 2001

• For a review, cf T. Maier al.  Rev. Mod. Phys. 77, 1027 (2005)



• Control :  
   Interpolate between DMFT (1 site) and the full lattice (infinite number of sites). 
   At large cluster size L, we have the exact solution

•  dependence of the lattice self-energy  
Different cluster methods are different parametrization of  dependence.

• Effect of short range spatial correlations

• Some order parameters requires more than 1 site, e.g. d-wave superconductivity.

k Σlattice(k, ω)
k
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic
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• Real space method
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Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…

Lichtenstein, Katsnelson 2000 
Kotliar et al. 2001

• DMFT on a superlattice of clusters

Superlattice
i,j I,J

• Cf  Lecture by David Sénéchal next Monday• Breaks translation invariance !



• Self energy  constant by pieces on the patchesΣ

• Cut BZ in Nc  patches (e.g. Nc = 2, 4, 8, 16)
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic
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For sector C on the negative ! !hole-doped" side a clear
crossing point at !#−1.5t is evident, separating a regime
where "G!" /2" increases as T is decreased from a region
where "G!" /2" decreases as T is decreased. We interpret the
crossing point as marking the chemical potential at which a
gap begins to open in sector C. We observe that for !#
−1.5t, "G!" /2" is substantially less than the Fermi-liquid
value but increases as T is decreased. This behavior is con-
sistent with the hypothesis of a Fermi-liquid state with very
large thermal corrections due to the divergence in the density
of states at the Van Hove point. At the temperatures available
to us the possibility of a marginal Fermi-liquid or non-Fermi-
liquid state in this parameter regime as proposed in Ref. 17
can neither be ruled out nor confirmed.

In sector B the identification of the transition point in the
doping case is more complicated !in the interaction-driven
case an analysis as in sector C is straightforward". As can be
seen from Fig. 3 !see also Fig. 11" a simple crossing point
does not occur in the "G!" /2" graph. Rather, one begins to
see a fan out from a temperature-independent set of curves.
Furthermore, in the range −1.3t$!$−0.9t "G!" /2" seems
to evolve !see also Fig. 11" as T is decreased to a value
which is temperature independent but less than the Fermi-
liquid value "G0!" /2,!eff". This is evidence for a non-

Fermi-liquid state. As the chemical potential is further in-
creased, evidence of a temperature-dependent decrease in
"G!" /2" becomes apparent, and by !=−0.5t a clear gap has
opened. Precisely locating the point at which the physics
changes from a gapless non-Fermi-liquid to a gapped state is
thus challenging but it is clear that the onset of gapped be-
havior in sector B occurs at a substantially higher chemical
potential than the onset of such behavior in sector C.

One may also consider density vs chemical-potential
curves such as those shown in Fig. 4. Interpretation is
complicated by two issues: first, if the gap is small then,
at the temperatures accessible to us, a substantial temperature
variation occurs. Second, while our data indicate that if
sector K has a gap, then at T=0 nK=1 /2, we see that the
density may approach the pinned value from above or below
depending on the value of the chemical potential. For these
reasons we do not use the nK data to identify phase bound-
aries.

Alternatively, the phase boundaries can be determined by
the evolution of the self-energy or inverse self-energy with
temperature. We chose not to use this method, as self-
energies in the sector-selective region display a strong tem-
perature dependence that can be analyzed more accurately by
considering the crossing point of "G!" /2".
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FIG. 3. !Color online" Upper panel: "G! "
2 " for sectors B !full

symbols" and C !empty symbols", at U / t=7 and t! / t=−0.15. The
strong temperature dependence in the sector-C curves arises from
the Van Hove divergence in the density of states. The crossing
points indicate the onset of gapping in the sectors. Lower panel:
same, for t! / t=−0.3.
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FIG. 2: Momentum space tiling used to define cluster approximations studied here: 2-site (leftmost panel), 4-site with stan-
dard patching (second from left), 4-site with alternative patching (4⇤), (central panel), 8-site (second from right) and 16-site
(rightmost panel). Momentum space patches indicated by shaded regions; electron self energy is independent of momentum
within a patch but may vary from patch to patch. Dots (red online) represents the K points in reciprocal space associated to
the patches in the DCA construction (see text). Thin lines : Fermi surfaces for the non-interacting system with t0 = �0.15t
for half filling and hole dopings of 10%, 20%, and 30%. All clusters have an inner patch around (0, 0) (yellow online) and an
outer patch around (�, �) (green online). Clusters with four or more sites also have an antinodal patch at (�, 0) and symmetry
related points (blue online), clusters with eight or more sites have a nodal patch ((�/2, �/2), red online). The 16-site cluster
has two additional independent momentum sectors, around (�/2, 0) (orange online) and around (3�/2, �/2) (cyan online). All
clusters have the full point group symmetry of the lattice.

field, given present computational capabilities, and call
for a new generation of theoretical developments aiming
at improving momentum-space resolution.

While the various aspects of the doping-dependent
phase diagram of the two dimensional Hubbard model
have been noted in various ways in the cluster dynam-
ical mean field literature, the generality of the results
and their robustness to choice of cluster have not been
previously appreciated. The comparison of results for
di�erent sized clusters clearly demonstrates that the es-
sentials of the carrier concentration dependence of phys-
ical properties of a doped Mott insulator are as sketched
in Fig. 1. Far from the insulating state, the properties
are those of a moderately correlated Fermi liquid. More-
over, the momentum dependence of the renormalizations
is very weak: the properties are described well by single-
site dynamical mean field theory, as previously noted e.g.
in Refs. 30,31. We refer to this regime as the isotropic
Fermi liquid. (Note that “isotropic” here means isotropic
scattering properties (self energy) along the Fermi sur-
face, but the Fermi surface is not circular.) As the dop-
ing is decreased towards the n = 1 insulating state the
system enters an intermediate doping regime where the
low temperature behavior is still described by Fermi liq-
uid theory, but the Fermi liquid is characterized by a
strong momentum dependence of the renormalizations,
with the renormalizations being largest near the zone cor-
ner (0,�)/(�, 0) points and smallest near the zone diago-
nal (±�/2,±�/2) regions of momentum space. We refer
to this as the regime of momentum space di�erentiation.
The change between the isotropic and momentum-space
di�erentiated Fermi liquid regimes is not characterized by
any order parameter and we believe it to be a crossover,
not a transition, but the doping at which the change oc-
curs is surprisingly sharply defined, and is indicated by
dashed lines in Fig. 1.

As the doping is decreased yet further, a non-Fermi-

liquid regime appears on the hole doping side but not
on the electron doping side (for the moderate anisotropy
considered here). In the non-Fermi-liquid regime, re-
gions of momentum space near (0,�)/(�, 0) acquire an
interaction-induced gap, while the zone diagonal regions
of momentum space remain gapless and (as far as can be
determined) Fermi-liquid like. We refer to this regime as
the sector selective regime. The boundary between the
regime of momentum space di�erentiation and the sec-
tor selective regime is indicated by a light solid line in
Fig. 1. Finally at doping n = 1 the system is in the Mott
insulating phase.

The remainder of the paper is organized as follows. In
section II we summarize the general features of the dop-
ing driven Mott transition, define the model to be studied
and the questions to be considered and outline the theo-
retical approach. In section III we demonstrate the exis-
tence of di�erent doping regimes and how they appear in
the di�erent cluster calculations. Section IV explores in
more detail the intermediate “momentum space di�eren-
tiation” doping regime, studies the momentum-selective
regime, and aspects associated with the pseudogap. Sec-
tion V then considers the sector selective regime. In sec-
tion VI we summarize our insights into the behavior of
smaller size clusters. Finally, section VII is a summary
and conclusion, also pointing out directions for future
work.

II. MODEL AND METHOD

In conventional electronic structure theory, band insu-
lators are periodic crystals in which all electronic bands
are either filled or empty. A necessary condition for band
insulating behavior is that the number of electrons per
unit cell is even. For the purpose of this paper we define
a correlation-induced or “Mott” insulator as a periodic
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to conventional situations where the onset of superconduc-
tivity increases the gap.

Our analysis builds on previous dynamical mean field
results. In pioneering papers Lichtenstein and Katsnelson
[20] and Maier et al. [21] showed that the N ¼ 4 cluster
dynamical mean field approximation yielded dx2"y2 super-

conductivity while subsequent studies of Maier and col-
laborators [7] on clusters with N as large as 26 provided
convincing evidence that the superconductivity found in
the small cluster calculations is not an artifact, but rather
is a property of the infinite cluster size limit, i.e., of the
Hubbard model. However, the studies of Ref. [7] were
restricted to a modest interaction, U ¼ 4t, too small to
give a pseudogap, and to relatively high temperatures, so
that the superconducting state was not constructed and
transition temperature was inferred from studies of the
pair susceptibility. Very recently Yang and collaborators
[22] analyzed the pairing susceptibility for higher interac-
tion strengths where a pseudogap occurred, but still did not
construct the superconducting state.

The pioneering work of Huscroft et al. [23] showed the
existence of a normal-state pseudogap in the dynamical
mean field approximation and many authors (using mainly
N ¼ 4 approximations) have studied its properties [24–42]
and several groups (still within the 4-site approximation)
have studied the interplay of superconductivity and the
pseudogap [32,43–47]. A key finding of the 4-site work,
in contrast to the larger-cluster studies of Ref. [22] is that
superconductivity persists all the way to the Mott insulat-
ing boundary, leaving open the question whether it is the
pseudogap per se, or simply Mott physics, which sup-
presses the superconductivity.

More recent developments [18] have enabled researchers
to access clusters large enough to obtain a reasonable picture
of the N ! 1 limit [15,22,48–52]. It has been found [15]
that in the dynamical cluster approximation (DCA) clusters
of size N > 4 the Mott transition is multistaged, with the
fully gapped Mott insulating state being separated from
the Fermi liquid state by an intermediate phase, in which
regions of momentum space near the ð0;!Þ=ð!; 0Þ point are
gapped and regions of momentum space near (% !=2,
%!=2) are not. By contrast, in most of the N ¼ 2, 4 calcu-
lations reported to date there is at half filling no intermediate
phase separating the insulator and the Fermi liquid [35,36],
while if the insulator is destroyed by doping an intermediate
phase with a suppressed, but nonzero, density of states is
found [35,36,42]. In this Letter we extend the new method-
ology to examine the properties of the superconducting state
at N large enough to properly represent the pseudogap.

The right-hand panel of Fig. 1 shows the phase diagram
determined from a comprehensive survey of parameter
space for the N ¼ 8 dynamical cluster approximation,
which previous work [15] shows adequately represents
the N ! 1 normal state physics of the model. Studies of
selected U and doping values in the computationally much
more expensive N ¼ 16 site cluster confirm (lower left

panel) that the physics found for N ¼ 8 is generic. The
scan of the phase diagram is conducted at temperature
T ¼ t=40 but checks of selected interaction and doping
values at our lowest accessible temperature T ¼ t=60 (see
also Ref. [53]) indicate that lower temperatures do not
bring significant changes (see Supplemental Material).
dx2"y2-symmetry superconductivity, with a typical tran-

sition temperature &t=40 ' 100 K (using a t ' 0:3 eV
representative of the CuO2 superconductors) occurs in a
band of interaction strength and density, vanishing if inter-
action or doping is tuned too far away from the insulating
state but separated from the Mott insulator by a region of
pseudogapped but nonsuperconducting states. This result,
previously inferred from extrapolation of the pairing
susceptibility [22] at high temperature, is here confirmed.
The onset of the normal state pseudogap (dashed line)
corresponds to the maximum in the superconducting order
parameter (see Supplemental Material [16]) and to the
maximum in transition temperature (see below). The inset
of Fig. 2, Supplemental Material [16], shows that the
superconducting region remains separated from the pseu-
dogap even as T ! 0.
The upper left panel shows that the situation is different

in the N ¼ 4 approximation. In this case, superconductiv-
ity extends all the way to the boundary of the Mott phase,
as has previously been found [45–47,54]. We believe that
the difference arises because in the 8- and 16-site cluster
approximations the pseudogap leads at T ¼ 0 to a com-
plete suppression of the density of states in the momentum
region (0, !) important for superconductivity; in the 4-site
approximations the pseudogap produces a density of states

FIG. 1 (color online). Superconducting phase diagram of the
two-dimensional Hubbard model in the plane of interaction
strength U and carrier concentration x computed using the 8-site
(right panel), the 4-site (left upper panel), and 16-site (left lower
panel) DCA dynamical mean field approximation at temperature
T ¼ t=40 with t0=t ¼ 0. Dashed line: location of the normal state
pseudogap onset. Circles and shading (red online) indicate the
superconducting region; squares (black online) and no shading the
nonsuperconducting Fermi liquid; diamonds and lighter shading
(blue online) the nonsuperconducting pseudogap region; triangles
and heavy solid line (dark green online) theMott insulating region
at n ¼ 1 and U >Uc. Open circles (light green online) denote
the points analyzed in Fig. 2. ‘‘Cross’’ and ‘‘plus’’ symbols in the
lower left panel denote points determined by Yang et al. [22] to
be nonsuperconducting and superconducting, respectively.
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local Green’s functions on each sublattice: Gii ,s
5GA ,s ,GB ,s for iPA ,B with

GAs~ ivn!5GB ,2s~ ivn!. (94)

Let us focus on a site belonging to sublattice A , and
eliminate all other degrees of freedom. The resulting ef-
fective action is identical to Eq. (88), but in the present
case the Weiss functions read G 0,s

−1 =ivn1m
2 hss2t2GBs . Using Eq. (94), we see that a single-site
description still holds, with (on the Bethe lattice)

G 0,s
215ivn1m2t2G2s2shs. (95)

This is easily generalized to an arbitrary lattice. The
d!` skeleton functional F now depends on the two
local Green’s functions: F=F[GAs ,GBs]. The self-
energy is purely local and can take two values with
SAs(ivn)5SB ,2s(ivn). It is convenient to write the
Hamiltonian in terms of two sublattice operators in the
reduced Brillouin zone (RBZ):

H05 (
skeRBZ

ek~cAks
1 cBks1cBks

1 cAks!

1 (
skeRBZ

shs~cAks
1 cAks2cBks

1 cBks!. (96)

The Green’s functions are obtained by inverting the ma-
trix:

S zAs

2ek

2ek
zBs

D
with zAs5ivn1m2shs2SAs and zBs5ivn1m
1shs2SBs . The impurity model to be considered is
still Eq. (88), but the self-consistency conditions now
read (Brandt and Mielsch, 1990, 1991):

Gas5zāsE
2`

`

de
D~e!

zAszBs2e2 (97)

with a=A ,B and ā=B ,A . When a semicircular density of
states is inserted in this equation, Eq. (95) is recovered.
The staggered magnetization and the free energy of the
antiferromagnetic phase are given by similar equations
as above.

It is instructive to notice that the simplest approxima-
tion to the self-energies, SAs5(U/2)(nAs2nBs), repro-
duces the usual Hartree-Fock approximation for the
staggered magnetization. Also, as soon as Néel order is
established and SAsfiSBs , it is possible to open a gap in
the single particle spectrum, i.e., ImG(v1i01)=0 if
uv+m+(SB2SA)/2u<(SA1SB)/2. This will always be
the case, particularly at half-filling for a nested, bipartite
lattice. Note that the effective conduction electron bath
entering the impurity model is then also gapped. These
are peculiarities of the d!` limit, in which long-
wavelength spin-wave excitations are absent. Neverthe-
less, the LISA method has proven useful for studying
the quantum transition between a strongly correlated
paramagnetic metal and a metal with spin-density wave
order, and some of the results are expected to hold in
finite dimensions as well (Sachdev and Georges, 1995;
see also Sec. VII.D.3).

In order to study the phase transitions between differ-
ent magnetic phases we have to compare the free ener-
gies of all possible magnetic states, using straightforward
generalizations of Eqs. (46) and (47). Alternatively, one
can calculate directly the relevant divergent susceptibil-
ity, along the lines of Sec. IV (keeping in mind, however,
the possibility of first-order transitions). For incommen-
surate magnetic orderings, no simple set of mean-field
equations can be written inside the ordered phase in the
general case, and one must resort to the study of suscep-
tibilities.

C. Superconductivity and pairing

The LISA mean-field equations are easily extended to
take into account superconducting long-range order
(Georges, Kotliar, and Krauth, 1993). We illustrate this
on the one-band Hubbard model, but the equations are
easily generalized to other models, such as the multi-
band Hubbard model described in Sec. VIII.C. One in-
troduces anomalous Green’s functions:

F~k,t![2^Tck"~t!c2k#~0 !&. (98)

In the following, we shall consider only pure singlet pair-
ing, for which F(−k,−t)=F(k,t) and pure triplet pairing
with Sz=0 for which F(−k,−t)=−F(k,t). Within the
present d=` formalism, the k dependence of F will be
only through ek , so that only pairing states having the
symmetry of the original lattice are possible in the limit
of d=`. This can be shown using the absence of vertex
corrections to the pair susceptibility (Sec. IV) for pairing
states with a different symmetry (Jarrell and Pruschke,
1993a). Pairing with a different symmetry, such as d
wave, requires an extension of the LISA formalism to
self-consistent clusters, see Sec. IX). However, the time
dependence of F can be highly nontrivial, which is in fact
expected to be crucial for models with repulsive interac-
tions. The underlying physical idea is that on-site equal-
time pairing is likely to be strongly suppressed in the
presence of a strong on-site repulsion, but that pairing
involving a time-lag between the members of a pair may
occur. This idea dates back to Berezinskii’s proposal
(Berezinskii, 1974) for triplet pairing in 3He, a generali-
zation of which has been recently considered for cuprate
superconductors by Balatsky and Abrahams (1992).

In the presence of a nonzero F , it is convenient to
work with Nambu spinors C i

1[(c i"
1 ,ci#)—or, in Fourier

space, Ck
1 [ (ck"

1 ,c2k#)—and with the matrix formula-
tion of one-particle Green’s functions:

Ĝ~k,t![2^TCk~t!Ck
1~0 !&

5S G~k,t! F~k,t!

F~k,t!* 2G~2k,2t!
D . (99)

With these notations, the kinetic term of the Hubbard
Hamiltonian reads −S^ij&t ijC i

1s3C j , where s3 denotes
the Pauli matrix. We shall first illustrate the derivation of
the mean-field equations on the z=` Bethe lattice. Fol-
lowing the cavity method, we integrate out fermionic
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Let us focus on a site belonging to sublattice A , and
eliminate all other degrees of freedom. The resulting ef-
fective action is identical to Eq. (88), but in the present
case the Weiss functions read G 0,s
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2 hss2t2GBs . Using Eq. (94), we see that a single-site
description still holds, with (on the Bethe lattice)

G 0,s
215ivn1m2t2G2s2shs. (95)

This is easily generalized to an arbitrary lattice. The
d!` skeleton functional F now depends on the two
local Green’s functions: F=F[GAs ,GBs]. The self-
energy is purely local and can take two values with
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The Green’s functions are obtained by inverting the ma-
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1shs2SBs . The impurity model to be considered is
still Eq. (88), but the self-consistency conditions now
read (Brandt and Mielsch, 1990, 1991):
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2`

`

de
D~e!

zAszBs2e2 (97)

with a=A ,B and ā=B ,A . When a semicircular density of
states is inserted in this equation, Eq. (95) is recovered.
The staggered magnetization and the free energy of the
antiferromagnetic phase are given by similar equations
as above.

It is instructive to notice that the simplest approxima-
tion to the self-energies, SAs5(U/2)(nAs2nBs), repro-
duces the usual Hartree-Fock approximation for the
staggered magnetization. Also, as soon as Néel order is
established and SAsfiSBs , it is possible to open a gap in
the single particle spectrum, i.e., ImG(v1i01)=0 if
uv+m+(SB2SA)/2u<(SA1SB)/2. This will always be
the case, particularly at half-filling for a nested, bipartite
lattice. Note that the effective conduction electron bath
entering the impurity model is then also gapped. These
are peculiarities of the d!` limit, in which long-
wavelength spin-wave excitations are absent. Neverthe-
less, the LISA method has proven useful for studying
the quantum transition between a strongly correlated
paramagnetic metal and a metal with spin-density wave
order, and some of the results are expected to hold in
finite dimensions as well (Sachdev and Georges, 1995;
see also Sec. VII.D.3).

In order to study the phase transitions between differ-
ent magnetic phases we have to compare the free ener-
gies of all possible magnetic states, using straightforward
generalizations of Eqs. (46) and (47). Alternatively, one
can calculate directly the relevant divergent susceptibil-
ity, along the lines of Sec. IV (keeping in mind, however,
the possibility of first-order transitions). For incommen-
surate magnetic orderings, no simple set of mean-field
equations can be written inside the ordered phase in the
general case, and one must resort to the study of suscep-
tibilities.

C. Superconductivity and pairing

The LISA mean-field equations are easily extended to
take into account superconducting long-range order
(Georges, Kotliar, and Krauth, 1993). We illustrate this
on the one-band Hubbard model, but the equations are
easily generalized to other models, such as the multi-
band Hubbard model described in Sec. VIII.C. One in-
troduces anomalous Green’s functions:

F~k,t![2^Tck"~t!c2k#~0 !&. (98)

In the following, we shall consider only pure singlet pair-
ing, for which F(−k,−t)=F(k,t) and pure triplet pairing
with Sz=0 for which F(−k,−t)=−F(k,t). Within the
present d=` formalism, the k dependence of F will be
only through ek , so that only pairing states having the
symmetry of the original lattice are possible in the limit
of d=`. This can be shown using the absence of vertex
corrections to the pair susceptibility (Sec. IV) for pairing
states with a different symmetry (Jarrell and Pruschke,
1993a). Pairing with a different symmetry, such as d
wave, requires an extension of the LISA formalism to
self-consistent clusters, see Sec. IX). However, the time
dependence of F can be highly nontrivial, which is in fact
expected to be crucial for models with repulsive interac-
tions. The underlying physical idea is that on-site equal-
time pairing is likely to be strongly suppressed in the
presence of a strong on-site repulsion, but that pairing
involving a time-lag between the members of a pair may
occur. This idea dates back to Berezinskii’s proposal
(Berezinskii, 1974) for triplet pairing in 3He, a generali-
zation of which has been recently considered for cuprate
superconductors by Balatsky and Abrahams (1992).

In the presence of a nonzero F , it is convenient to
work with Nambu spinors C i

1[(c i"
1 ,ci#)—or, in Fourier

space, Ck
1 [ (ck"

1 ,c2k#)—and with the matrix formula-
tion of one-particle Green’s functions:

Ĝ~k,t![2^TCk~t!Ck
1~0 !&

5S G~k,t! F~k,t!

F~k,t!* 2G~2k,2t!
D . (99)

With these notations, the kinetic term of the Hubbard
Hamiltonian reads −S^ij&t ijC i

1s3C j , where s3 denotes
the Pauli matrix. We shall first illustrate the derivation of
the mean-field equations on the z=` Bethe lattice. Fol-
lowing the cavity method, we integrate out fermionic
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that the properties of each region will be described by
one orbital of the effective impurity model. More pre-
cisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central
square centered at momentum (0, 0) and containing the
nodal region; the complementary region P− extends to
the edge of the BZ and contains in particular the antin-
odal region and the (π, π) momentum. On Fig. 2, we also
present the partial density of state of both patches.

(0,!) (!,!)

(!,0)(0,0)

P
+

P
-

FIG. 1: (Color online) The Brillouin zone is divided into two
patches P+ (inside the inner blue square) and P− (between
the two squares). The dotted line is the free (U = 0) Fermi
surface at δ = 0.1 for t′/t = −0.3. P+ (resp. P−) encloses the
nodal (resp. antinodal) region.
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"

0

0.5
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1.5

D
O

S

Total DOS

Central patch P
+

Border patch P
-

FIG. 2: (Color online) Partial density of states of the two
patches P+ (solid blue curve with circles) and P− (solid
red curve with squares), and total density of states (dashed
curve); t′/t = −0.3.

It is important to check that the main qualitative re-
sults of our approach are independent of the precise shape
of the patches. We will discuss this point in Sec. III E,
and show that indeed our results are qualitatively similar
for a family of patches in which the P+ patch encloses a
variable part of the bare Fermi surface around the nodal

point. Moreover, we have also considered another clus-
ter method, cellular-DMFT (CDMFT),4,18 and obtained
qualitatively similar results. Because two-site CDMFT
breaks the lattice square symmetry, we focus here on a
generalized DCA approach.

Following the DCA construction (see also Ap-
pendix A), we associate a momentum-independent self-
energy Σ±(ω) to each patch of the Brillouin zone. This
self-energy is then identified with the Fourier transform
of the cluster self-energy of a two-site cluster of Ander-
son impurities embedded in a self-consistent bath. This
two-site Anderson impurity model is given by

Seff = −
∫∫ β

0
dτdτ ′

∑

a,b=1,2
σ=↑,↓

c†aσ(τ)G−1
0,ab(τ, τ

′)cbσ(τ ′)

+

∫ β

0
dτU

∑

a=1,2

na↓na↑(τ) (3)

G−1
0ab(iωn) = (iωn + µ)δab − t̄(1 − δab) − ∆ab(iωn), (4)

where a, b = 1, 2 is the site index, U is the on-site inter-
action, ∆ is the hybridization function with a local com-
ponent ∆11(ω) = ∆22(ω) and an inter-site one ∆12(ω).
We choose a convention in which the hybridization ∆
vanishes at infinite frequencies and therefore denote the
constant term separately (t̄). Since we restrict ourselves
to paramagnetic solutions, we dropped the spin depen-
dence of G0, ∆ and t̄. The self-consistency condition de-
termines both ∆ and t̄ and is written in the Fourier space
of the cluster, which in this case reduces to the even and
odd orbital combinations c†±σ = (c†1σ ± c†2σ)/

√
2:

ΣK(iωn) =G0K(iωn)−1 − GK(iωn)−1 (5)

GK(iωn) =
∑

k∈PK

1

iωn + µ − εk − ΣK(iωn)
. (6)

In this expression, momentum summations are normal-
ized to unity within each patch, and the index K = ±
refers both to the inner/outer patch index and to the
even/odd orbital combinations of the two-impurity prob-
lem. t̄ is determined by the 1/ω2 expansion of the previ-
ous equations, leading to

t̄ =
∑

k∈P+

εk = −
∑

k∈P−

εk. (7)

The impurity model has the same local interaction as the
original lattice model: This is a consequence of the fact
that both patches have equal surface (see Appendix A).

As usual in the DMFT problems, the quantum impu-
rity model (3) can be rewritten in a Hamiltonian form,
i.e. as the Hamiltonian for a dimer coupled to a self-
consistent bath

H = Hdimer + Hbath, (8)

kx

ky

 

 

 

 

 

22Tutorial : Minimal two-patches DCA for Fermi Arcs 
M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet,  
G. Kotliar, A. Georges, EPL and PRB 2009

Inner patch P+ : Nodes

Outer patch P- : Antinodes

Free Fermi surface

Two-site Anderson impurity model

1

Bath     

2

µ = 1, 2

c± = (c1 ± c2)/
⇥

2

• At , outer patch P- becomes insulating  
         [how ?  Cf Tutorial !]

δ = 0.16
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23DMFT is high temperature method

“Top to Bottom” 
Start from high T/doping 

R.G. 
Diagrammatic methods 

“Bottom to Top” 
Study the many-body ground state 

DMRG, PEPS, MERA



24Large vs minimal clusters
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weakly corrected
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• At high T or δ, intermediate U:

• Solvers are limited (sign problem !) for large clusters in some regimes

• At lower T, δ

• Small clusters capture some important effects (pseudogap, d-SC). 
Minimal cluster ? Physical picture ?



• Compare to e.g. diagrammatic QMC, DQMC

• Systematic benchmarks for new methods on these points

25Converging large clusters at high T

U=t ¼ 4, in order for the finite-T data to be consistent with
T ¼ 0. Similar to the strong coupling case, DF provides
only a slight shift to the double occupancy, a minimal
improvement over DMFT alone.
The ground-state double occupancies are very precisely

determined by AFQMC and DMET, which are in agree-
ment. The FN value is somewhat overestimated. Results
from DMRG fall below AFQMC and DMET, and the error
bar underestimates the uncertainty. The larger error appears
to be consistent with the difficulty in treating the small U
limit in the DMRG calculations. The results from MRPHF
show an improvement in D as the system size is increased,
consistent with the behavior for the energy. In the case of
UCCSD, since it is an expansion in the coupling strength, at
weak coupling the procedure is more reliable, and while
there are substantial finite-size effects, the extrapolation
produces a result within error bars of AFQMC and, in
general, agreement with DMET.

VIII. FREQUENCY AND MOMENTUM
DEPENDENCE

Next, we discuss single-particle finite-temperature prop-
erties. All finite-temperature algorithms discussed in this
work are based on approximations of the single-particle
self-energy. We show three characteristic plots for this
quantity: Figure 15 shows the imaginary part of the local
self-energy as a function of Matsubara frequency, Fig. 16
shows the dependence of the real part of the lowest
Matsubara frequency on k space, and Fig. 17 shows the
frequency dependence of the imaginary part of the self-
energy for a specific momentum. Any discrepancy in the
energy or double occupancy is the result of discrepancies in
the single-particle self-energy.
The data shown in Fig. 15 are obtained for weak

interaction strength U=t ¼ 2 and for a density n ¼ 0.3.

In this metallic regime, self-energies are small. Black circles
denote the imaginary part of the local self-energy from an
Nc ¼ 20 DCA calculation, which for these parameters
shows essentially no finite-size effects. The data agree
perfectly with DiagMC-G2W data shown as red dashed
lines, and convergence of the DiagMC-G2Γ method to the
result of the other two methods (stars, magenta dotted line)
is observed as a function of expansion order α. This
agreement implies that the local physics is captured well
by all three algorithms.

0 10 20 30 40
iωn

-0.04

-0.03

-0.02

-0.01

Im
 Σ

lo
c(iω

n)

DiagMC G2W 64x64
DCA
DiagMC-G2Γ

U=2, T=0.5, n=0.3, t’=0

   =1α

α   =6

FIG. 15. Imaginary part of the local self-energy, ImΣlocðiωnÞ at
U=t ¼ 2, T=t ¼ 0.5 and n ¼ 0.3 from DCA and DiagMC. In the
case of DiagMC-G2Γ, we label α, the series order from Eq. (7).

FIG. 16. Comparison of the real part of the self-energy,
ReΣðk; iω0Þ, at the lowest Matsubara frequency iω0, obtained
from DF (red) compared to 72-site DCA calculations (black)
plotted as a function of momentum k, throughout the Brillouin
zone for n ¼ 1.0, U=t ¼ 8, T=t ¼ 0.5. The dual fermion and
DCA self-energies are plotted as step functions. Also included are
interpolated results obtained by diagrammatic determinantal
Monte Carlo (DDMC) [120,140,142,143] (dashed black) with
a gray shading to indicate the level of uncertainty.
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iωn
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(  
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DΓA

FIG. 17. Comparison of the frequency dependence of the
imaginary part of the self-energy, ImΣðk; iωnÞ, at fixed k ¼
ðπ; 0Þ obtained from DF (red) compared to 72-site DCA
calculations (black) plotted for n ¼ 1.0, U=t ¼ 8, T=t ¼ 0.5.
Also shown are results from the dynamical vertex approximation
DΓA (blue) [124,144].

SOLUTIONS OF THE TWO-DIMENSIONAL HUBBARD … PHYS. REV. X 5, 041041 (2015)

041041-21

DCA 72 sites, J. LeBlanc et al. Phys. Rev. X 5, 041041 (2015)
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26Cluster DMFT & Hubbard model

• In various clusters sizes (4, 8, 16, ...).

• Behavior of , gap vs Tc δ
• Emerging from Mott insulator

• Nodes/antinodes. Fermi Arcs

Pseudo-gap d-wave SC

A lot of authors & works since 2000, e.g. 
Capone, Civelli, Ferrero, Georges, Gull, Haule, 
Imada, Jarrell, Kotliar, Lichtenstein, Katsnelson, 
Maier, Millis, Sordi ,Tremblay, Werner, OP, .... 

• Emergence of some consensus on robust features of the Hubbard model

• Cf  Lecture by David Sénéchal next Monday : ED, cluster DMFT and application.
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Quantum impurity solvers



• Compute ,  

• For multi orbital model (e.g. Kanamori), clusters

• Real time/imaginary time.

• …

G G(2)

28Quantum impurity solvers : the bottleneck !

a,b = 1,N : degree of freedom (e.g. spin, orbital index, ...)

Bath Interaction
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Why do we need specific algorithms 
to solve DMFT 

quantum impurity models ?



• Many sophisticated approaches to quantum impurity models.

• Integrability (Bethe Ansatz) in the universal regime  
A. Tsvelik, P. Wiegmann/ N. Andrei,1980

• Boundary Conformal Field Theory Cardy; Affleck, Ludwig, 1991 Bosonization. 

• Not sufficient for DMFT

• Low-energy solution only. 

• DMFT baths have structure !

30The pre-DMFT toolbox

ω

Δ(ω)

D-D
T,�, TK << D



31DMFT baths have structure in  !ω

disappears continuously (at T=0) at a critical value
Uc2/D�2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=⌥), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G⇤ i�n↵at�
1/2

i�n⇥U/2
⇥

1/2
i�n⇤U/2

. (232)

Since ImG(�⇥i0⇥) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [�(�=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G⇤ i�n↵�
1/2

G 0
⇤1⇤ i�n↵⇤U/2

⇥
1/2

G 0
⇤1⇤ i�n↵⇥U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in �/U . This implies that G(i�)�i� for small

�, and the substitution into the self-consistency condi-
tion implies that G 0

�1�i� , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(i�n):

D4G3⇤8D2�G2⇥4⇤4�2⇥D2⇤U2↵G⇤16��0.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc�D for (234) (Uc�)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap ⇤�g/2⌅�⌅⇥�g/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that ⌦(�+i0+)
must be purely real inside the gap, except for a
⇧-function piece in Im⌦ at �=0, with

Im⌦⇤�⇥i0⇥↵�⇤ ⌃2⇧⇤�↵ for ��⇥⇤�g/2,�g/2�
(235)

and that Re⌦ has the following low-frequency behavior:

Re⌦⇤�⇥i0⇥↵⇤U/2�
⌃2

�
⇥O⇤�↵. (236)

In these expressions, ⌃2 is given by

1
⌃2

�⇥
⇤⌥

⇥⌥

d⌅
⌃⇤⌅↵
⌅2 . (237)

⌃2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap �g vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U⌅Uc1(T�0), with Uc1

ED

� 2.15D (while the iterated perturbation theory method
yields Uc1

IPT � 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density  D⌃(�) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.

64 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996

DMFT bath evolution close  
to Mott transition (IPT solution)

A. Georges et al., Rev. Mod. Phys. 68, 13, (1996)

metal

insulator

• We want to compute the full  dependencyω



• Exact/Controlled algorithms

• Continuous Time Quantum Monte Carlo (CTQMC).   Cf Lecture by M. Ferrero today

• Exact diagonalization (ED).                                         Cf lecture by D. Sénéchal on Monday

• Numerical Renormalization group (NRG).                  Cf Lecture by F. Kugler on Monday

• Tensor network (DMRG).

• Approximate solvers

• Iterated Perturbation Theory (IPT).   Cf TRIQS tutorial

• NCA family (NCA, OCA, …)

• Slave bosons / Hartree-Fock / “Hubbard I” ( = atomic self-energy)

32The DMFT solver toolbox



33

Continuous Quantum Monte Carlo 
(CTQMC)



• Expansion in interaction  : CT-INT  
A.N. Rubtsov et al., Phys. Rev. B 72, 035122 (2005) 

• Expansion in Δ(ω), around the atomic limit : CT-HYB  
P.  Werner, A. Comanac, L. de’ Medici, M. Troyer, A. J. Millis, PRL 97, 076405 (2006);  
P . Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

• Continuous time determinantal  : CT-AUX  
E.Gull, P. Werner, O.P., M. Troyer EPL (2008) 

34CTQMC algorithms

a,b = 1,N : degree of freedom (e.g. spin, orbital index, ...)

Bath Interaction
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35CT-HYB : principle

Z =
⇧

n⇤0

⌥

<

n⌃

i=1

d�id� ⌅i
⇧

ai,bi=1,N

det
1⇥i,j⇥n

�
�ai,bj (�i � � ⌅j)

⇥
Tr

⇤
T e��Hlocal

n⌃

i=1

c†ai
(�i)cbi(�

⌅
i)

⌅

⌦  � ↵
w(n, {ai, bi}, {�i})

• Explicit expansion in power of . Δ

• Compute the sums & integrals with Monte Carlo.

• . In practice, often ⟨n⟩ ∼ β |Δ | n ∼ 100 − 1000

n-body correlators 
of the bath (Wick)

n-body correlators 
of the impurity

• Cf  Lecture by Michel Ferrero on QMC, and CT-INT.



• Imaginary time Green function ,  self-energy 

• Two-body functions 

• Impurity (many-body) density matrix.

• Impurity dominant states

• Which states of the impurity contribute the most to the path integral ?

Gab(τ) Σab(iωn)

G(2)
abcd(τ1, τ2, τ3, τ4) ≡ − ⟨Tτc†

a(τ1)cb(τ2)c†
c (τ3)cd(τ4)⟩

36CT-HYB : what can we compute ?

• Cf  TRIQS tutorial



• Treat the full multiplets, with any impurity interaction e.g. Kanamori, Slater, spin orbit

• Can also handle some retarded interaction  (for DMFT extension, e.g. GW + DMFT).

• CTHYB is a standard algorithm for material computations.

U(τ)

37CTHYB:  Pros



• Fermionic sign problem. 

• Limited to imaginary time. The analytical continuation issue.

• Slow. Convergence 

• Scales poorly 

• at low T (asymptotically ) 

• with number of orbitals (a priori exponential, as the impurity itself is solved exactly).

∼ 1/ Nsamples

∼ β3

38CTHYB:  Cons



• Massive cancellation in the sum.  Cf Lecture by M. Ferrero.

• A major limitation of the algorithm. 

• Exponentially hard at low T (error bars grows).

• Not present for DMFT 1 band,  but in clusters, off-diagonal , spin-orbit, …

• Not physical. Depends on the basis. 
e.g. dimer cluster (2 site) : no sign in  

• Not predictable a priori.

Δab(ω)

ceven/odd = (c1 ± c2)/ 2

39Fermionic sign problem
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Bath     

1 2



• Spectral representation 
 

      

• Matrix  is of low-rank (badly conditioned i.e. hard to invert).

•  : easy

•  is impossible / very hard, specially at large .  Inverse Laplace transform.

G(τ) = ∫ dϵA(ϵ)K(τ, ϵ) K(τ, ϵ) ≡ −
e−ϵτ

1 + e−βϵ
A(ω) = −

1
π

ImGR(ω + i0+)

K(τ, ϵ)

A(ω) → G(τ)

G(τ) → A(ω) ω

40The analytical continuation problem

1. Extract the physics from imaginary time data.

2. Use a real time solver (cf later), if possible.

3. Use analytic continuation techniques.

How to address this issue ?



• Thermodynamic quantities are directly computed, e.g.

• e.g. density 

• energy 

• How does the Green function  look like ? 

n(μ)

⟨H⟩

G(iωn)

41Interpret imaginary time/frequency results

Metal (sketch)

G(iωn) = ∫ dω
A(ω)

iωn − ω

Im G(iωn) iωn

ωn

Insulator (sketch)

Im G(iωn)

ωn =
(2n + 1)π

β



• Fermi liquid properties (low energy)

• Quasi-particle residue 

• Coherent scale 

•
• Testing FL form with first Matsubara frequency :    

Z

EFL

ReΣR(0) = Σ(iωn → 0)

Im Σ(iω0 = iπT) ∼ T + O(T3)

42Matsubara self-energy in a metal

ΣR(ω) = ΣR(0) + (1 −
1
Z ) ω − i

ω2 + (πT )2

EFL
+ O(ω3, T3)

Im Σ(iωn) = (1 −
1
Z ) ωn +

ω2
n − (πT )2

EFL
+ O(ω3, T3)

Im Σ(iωn)
∼ 1/ωn

ωn



• Transport requires the spectral function, or  in real frequencies.

• Example : optical c-axis conductivity 

Σ(ω)

43Transport

+ω)

dom describing the antinodal regions becomes insulating
while that associated to the nodal quasiparticles remains me-
tallic. The orbital-selective mechanism responsible for the
pseudogap has also been confirmed in studies involving
larger clusters.18–20 In Refs. 14 and 15, we used the VB-
DMFT to compute tunneling and ARPES spectra in good
agreement with experiments.

II. INTERPLANE OPTICAL CONDUCTIVITY

We first compute the frequency-dependent c-axis optical
conductivity !c!"", given by

!c!"" =
2e2c

#ab
# d$

f!$" − f!$ + ""
"

1
N$

k
t!
2 !k"A!k,$"A!k,"

+ $" , !2"

where f is the Fermi function, A!k ,$" the in-plane spectral

function, N the number of lattice sites, e the electronic
charge, a ,b the in-plane lattice constants, c the interplane
distance, and t!!k"= t0%cos!kx"−cos!ky"&2 the interplane tun-
neling matrix element.21,22 Note that in this expression t!!k"
has a strong k dependence with contributions stemming
mainly from the antinodal region of the Brillouin zone. For
convenience, we will express energies in units of the half-
bandwidth D of the electronic dispersion and the optical con-
ductivity in units of !"=2e2ct0

2 /#abD2. In YBa2Cu3Oy
compounds, D'1 eV'8000 cm−1 and !" is of order
!"'50 "−1 cm−1.

In the left panel of Fig. 2, we display the computed !c!""
for three levels of hole doping and several temperatures. Our
results show three distinctive behaviors. At high doping
%&16%, the conductivity displays a metalliclike behavior
with the buildup of a Drude-type peak as the temperature is
decreased. Note that as the peak increases additional spectral
weight appears at low energy. At low doping %'10%, !c!""
is characterized by a gaplike depression at low frequencies
where spectral weight is suppressed with decreasing tem-
perature. The width of the gap when it opens at high tem-
perature is '0.15D and remains approximately the same as
the temperature is lowered. Note that the spectral weight that
is lost in the gap is redistributed over a wide range of ener-
gies. The appearance of the depression in the spectra can be
directly linked to the formation of a pseudogap in the antin-
odal region.14,15 Indeed, the matrix element t! appearing in
the expression of the optical conductivity Eq. !2" essentially
probes the region25 close to !() ,0" , !0, ()" so that a loss
of coherent antinodal quasiparticles results in a loss of low-
energy spectral weight in the c-axis optical conductivity. In
Refs. 14 and 15, it has been shown that in a zero-temperature
analysis of VB-DMFT, coherent quasiparticles disappear in
the antinodal region at a doping '16%. This is consistent
with !c showing a depression only for doping levels below

�

�

�

�

� � � � � � � � � �

� � � � � � � � � �

FIG. 1. !Color online" The two patches dividing the Brillouin
zone. The line shows a noninteracting Fermi surface for the disper-
sion *k of Eq. !1". The central !red" patch covers the nodal region of
the Fermi surface while the border !blue" patch covers the antinodal
region.
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FIG. 2. !Color online" Left panel: the c-axis optical conductivity !c!"" calculated within VB-DMFT for three doping levels. !c is
displayed in units of !" as defined in the text !!" is of order 50 "−1 cm−1 for YBa2Cu3Oy". Frequency is normalized to the half-bandwidth
D'1 eV=8000 cm−1. Right panel: experimental data for the c-axis optical conductivity of YBa2Cu3Oy. The data for YBa2Cu3O7.00 is
taken from Ref. 8 where the phonon contribution was subtracted by fitting to five Lorentzian oscillators. The data for YBa2Cu3O6.95 and
YBa2Cu3O6.67 are taken from Refs. 23 and 24.

FERRERO et al. PHYSICAL REVIEW B 82, 054502 !2010"

054502-2

• Fermi functions “zoom” at low frequencies.

• What to do ? 

• Real time/frequency solver [recommended]

• Analytic continuation [at your own peril …]

Fermi function



• Maximum entropy (MaxEnt)  
Jarrell and Gubernatis, Physics Reports  Vol. 269, 133, (1996).

• The most probable  given , error bar and correlations. 

• Exploit structure of the Green function, e.g. Nevalinna method [not for noisy data] 
 Fei et al. Phys. Rev. Lett. 126, 056402 (2021) 

A(ω) G(τ)

44Analytic continuation techniques

• Padé approximants

• Approximate  by a rational function.  
 

G(z) Cf  TRIQS tutorial



45CTQMC + Padé vs NRG
from M. Ferrero & P. Cornaglia

ω

-14

-12

-10

-8

-6

-4

-2

 0

 2

-10 -8 -6 -4 -2  0  2  4  6  8  10

NRG

-5

-4

-3

-2

-1

 0

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

CTQMC

NRG

Im Σ(ω)

ω

Im Σ(ω)

Little finite 
temperature effect

DMFT, 1 band, Bethe Lattice, ,  βD = 400 U/D = 5.2



46A lot of structure beyond the Fermi liquid

courtesy M.Ferrero (Padé & compares perfectly to NRG)

• Real part of self-energy

• Fermi liquid theory only valid here 

• Kink = loss of quasi-particle 
coherence



47

Quantum impurity solvers

2. Hamiltonian solvers

• Exact diagonalization (ED).                                         Cf lecture by D. Sénéchal on Monday

• Numerical Renormalization group (NRG).                  Cf Lecture by F. Kugler on Monday

• Tensor network (DMRG).



• Write the hybridization  as an explicit free fermion bathΔ

48Hamiltonian form

H =
X

k,�=",#
"k�⇠

†
k�⇠k� +

X

�=",#
"dd

†
�d� + Und"nd# +

X

k,�=",#
Vk�(⇠

†
k�d� + h.c.)

S = �
ZZ �

0
d⌧d⌧ 0d†�(⌧)G�1

� (⌧ � ⌧ 0)d�(⌧
0) +

Z �

0
d⌧ Und"(⌧)nd#(⌧)

G�1
� (i!n)⌘ i!n + ✏d �

X

k

|Vk�|2

i!n � ✏k�
| {z }

��(i!n)



• Fit  with a small bath (on Matsubara frequency, at a small fictitious temperature )     

                              

• Diagonalize or use Lanczos algorithm to find the many-body ground state 

• Compute the  Green function 

Δ Teff

MinV,ξ ∑
n

Δ(iωn) − ∑
k

|Vk |2

iωn − ξk

2

|ψGS⟩

T = 0 G(t) ∼ ⟨ψGS |c e−it(H−EGS) c† |ψGS⟩ + ( . . . )

49Exact Diagonalization solver : principle

• Cf  Lecture by David Sénéchal next Monday : ED, cluster DMFT and some application.



• Pros :

• 1 band DMFT: a small bath of a few sites is sufficient to capture the Mott transition

•  solver (but with , there is a finite resolution)

• Cons:

• Scales exponentially with number of orbital/cluster size. 
In practice, 4 sites is a maximum.

• Poor  resolution. 

• Convergence with bath size is hard to achieve.

T = 0 Teff

ω

50Exact Diagonalization solver



• Pros :

• Gold standard for real time solvers in equilibrium

• Very precise a low energy

• Now can compute vertex function, even in real time !

• Cons:

• Scales exponentially with number of orbital/cluster size. 
In practice, 4 sites is a maximum.

• Poor resolution at large ω

51Numerical Renormalization Group (NRG)

Cf  Lecture by F. Kugler



52

Tensor network. 
DMRG



• Many body wave functions often have a low rank structure.

• Consider an impurity model, and -body wave function written in the Fock states.N

53N-body wavefunctions 

n1 n2 n3 n4
… np

|Ψ⟩ = ∑
n1n2n3…np

Ψn1n2n3…np
|n1n2n3…np⟩

Ψn1n2n3…np
=

• For many systems (e.g. 1d, quantum impurities), the tensor  is low rankΨ



• A -dimensional array  with the indices 

• Pictorial representation.  
Legs = indices.  
Contraction = connecting lines.

n Ti1i2…in ik ∈ {1,…, d}

54Tensors

i1 ini2i2

Ti1i2…inAi1i2

i1

Low rank decomposition of tensors ?



• Singular Value Decomposition (SVD) (or RRQR, RRLU …)

55Low rank matrix

<latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�
≈

A = UDV D =

λ1 0 … 0
0 λ2 … 0
⋮ ⋮ ⋮
0 … 0 λn

• Precision :  keep  largest singular values 

• -rank. 

ϵ χ λi

χ = ϵ

Low rank:  save memory and computing time

Aij = LirRrj 1 ≤ r ≤ χ



• Matrix product states (MPS) = Tensor Trains.

56Low rank tensors

<latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M=">AAACX3icdVFda9swFFW8bm2zrU23p7EXMTPYk7FSU+exdAz22EHTFmJTrpWbRESSjSS3BCd/Ya/bX9vj/skUNx3d2l4QHM4591NFJYV1cfyrEzzbev5ie2e3+/LV67393sGbc1vWhuOQl7I0lwVYlELj0Akn8bIyCKqQeFHMP6/1i2s0VpT6zC0qzBVMtZgIDm5NZXwmrnphHMVJwgYpjaPDdBCzgQdHacJSRlkUtxGSTZxeHXS+ZOOS1wq14xKsHbG4cnkDxgkucdXNaosV8DlMceShBoU2b9phV/SjZ8Z0Uhr/tKMtez+jAWXtQhXeqcDN7P/amnxMG9VuMsgboavaoea3jSa1pK6k683pWBjkTi48AG6En5XyGRjgzt+n28003vBSKdDjJpujW41Y3ixDlhnQ03ar+4bCQGvIZKuGbPnQ0Bbp//XQkNElDfv0rqI//N116dPgvB+xoyj5loTHJ5sv2CHvyQfyiTCSkmPylZySIeFkRr6TH+Rn53ewHewFvVtr0NnkvCX/RPDuD9b9txE=</latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M=">AAACX3icdVFda9swFFW8bm2zrU23p7EXMTPYk7FSU+exdAz22EHTFmJTrpWbRESSjSS3BCd/Ya/bX9vj/skUNx3d2l4QHM4591NFJYV1cfyrEzzbev5ie2e3+/LV67393sGbc1vWhuOQl7I0lwVYlELj0Akn8bIyCKqQeFHMP6/1i2s0VpT6zC0qzBVMtZgIDm5NZXwmrnphHMVJwgYpjaPDdBCzgQdHacJSRlkUtxGSTZxeHXS+ZOOS1wq14xKsHbG4cnkDxgkucdXNaosV8DlMceShBoU2b9phV/SjZ8Z0Uhr/tKMtez+jAWXtQhXeqcDN7P/amnxMG9VuMsgboavaoea3jSa1pK6k683pWBjkTi48AG6En5XyGRjgzt+n28003vBSKdDjJpujW41Y3ixDlhnQ03ar+4bCQGvIZKuGbPnQ0Bbp//XQkNElDfv0rqI//N116dPgvB+xoyj5loTHJ5sv2CHvyQfyiTCSkmPylZySIeFkRr6TH+Rn53ewHewFvVtr0NnkvCX/RPDuD9b9txE=</latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�
≈

• Tensor networks

• How to manipulate tensors in this compressed form.

• A new (big) chapter in linear algebra…

Ti1i2…in ≈ Mi1
1r1

Mi2
r1r2

…Min
rn−11



57N-body wavefunctions 

n1 n2 n3 n4
… np

• Variational Ansatz for ground state  in term of a low rank tensor network.

• DMRG (Density Matrix Renormalization Group). S. White, 1992

• Controlled by quantum entanglement / bond dimension (rank)  

ΨGS

χ

|Ψ⟩ = ∑
n1n2n3…np

Ψn1n2n3…np
|n1n2n3…np⟩

Ψn1n2n3…np
=



1. Fit the bath  with a discrete bath, as in ED (but with much larger systems). 

2. Use DMRG algorithm to find the many-body ground state 

• Use low rank tensor Ansatz for  and minimize the energy . 

3. Use time evolution algorithm in tensor networks to compute the  Green function      
 
             

Δ

|ψGS⟩

|ψGS⟩ ⟨ψGS |H |ψGS⟩

T = 0

G(t) ∼ ⟨ψGS |c e−it(H−EGS) c† |ψGS⟩ + ( . . . )

58Solving quantum impurities with tensor networks 

e−iHt



59Many details left from this introduction

many nearly fully occupied (empty) bath sites with very
low (high) on-site energies ϵl.
Since basis states withmany unoccupied low-energy sites

have a very low Schmidt coefficient, these states are
discarded from the MPS. The same holds for occupied
high-energy sites. However, when dealingwithmulti-orbital
models, the star geometry is not enough to be able to
calculate Green’s functions using MPS. The growth of the
bond dimensions still makes those calculations unfeasible.
The key idea of the present work is to construct a tensor

network which is beyond a standard MPS but similar
enough to be able to use established methods like DMRG
and time evolution. From Hamiltonian (1), one can
immediately notice that there are no terms coupling bath
sites of different orbitals. Hence, it might not be advanta-
geous to combine those (not directly interacting) degrees of
freedom into one large physical index in the MPS.
Therefore, our proposed tensor network separates the

bath degrees of freedom as much as possible. It consists of
separate tensors for every orbital-spin combination, each
connected to bath tensors as shown in Fig. 2. This tensor
network is not a MPS anymore since there are some tensors
(labeled A↓ and B↑ in the example of Fig. 2) that have
three bond indices and one physical index, i.e., which are of
rank four. Cutting any bond splits the network into two
separate parts. Therefore, one can calculate the Schmidt
decomposition in a way very similar to a MPS, which
means that DMRG is also possible. The main bottleneck of
calculations with FTPS is to perform SVDs of the rank-four

tensors representing the impurities. When all bond indices
have the same dimension χ, it is necessary to do a SVD for
a χ2d × χ matrix with computational complexity Oðχ4dÞ.
However, as we show below, this operation does not pose a
substantial problem for calculations using FTPS. Since the
impurity tensors pose the biggest challenge, our tensor
network would likely also allow us to deal with the chain
geometry without a drastic increase in computational cost.
In the present paper, we only use FTPS with baths in star
geometry. The proposed FTPS are similar to the tensor
network used by Holzner et al. [37] to perform NRG
calculations for ground-state properties of an AIMwith two
orbitals.
The three-legged tensors in our network (Fig. 2) can also

be interpreted as two coupled junctions with three legs in
the language of Ref. [45], where it has been shown that
DMRG is possible on such junctions. Furthermore, our
approach has similarities to the so-called tree tensor net-
works (TTN) [43,46–48].

1. Time evolution

Time evolution with the Hamiltonian Eq. (1) is not
straightforward since it features long-range hoppings.
Possible methods include Krylov approaches [49], the
time-dependent variational principle [50,51], and the series
expansion of eiHt proposed by Zaletel et al. [52]. In this
work, however, we use a much simpler approach.
First, we split the Hamiltonian into the following terms:

(i) the spin-flip and pair-hopping terms HSF-PH
m;m0 for each

orbital combination, with
P

m0>mH
SF-PH
m;m0 ¼ HSF-PH [see

Eq. (1)], (ii) the density-density interaction terms HDD,
and (iii) all other terms, Hfree ¼ Hbath þ ϵ0

P
mσnm0σ. With

these terms, we write the time-evolution operator for a
small time step Δt using a second-order Suzuki-Trotter
decomposition [53],

e−iΔtH≈
! Y

m0>m

e−i½ðΔtÞ=2&H
SF-PH
m;m0

"
e−i½ðΔtÞ=2&HDD ·

×e−iΔtHfreee−i½ðΔtÞ=2&HDD

! Y

m0>m

e−i½ðΔtÞ=2&H
SF-PH
m;m0

"
: ð8Þ

Note that in this decomposition, the order of the spin-flip and
pair-hopping terms is important. The order of operators in
the second product must be opposite to the one in the first.
We see that Eq. (8) involves three different operators,

HSF-PH
m;m0 , HDD, and Hfree, each of which will be treated

differently.
Time evolution of the density-density interactions is

performed with a MPO-like representation of the time-
evolution operator e−i½ðΔtÞ=2&HDD. For a three-orbital model,
first the full matrix (43 × 43) of e−i½ðΔtÞ=2&HDD is created,
which is then decomposed into MPO form by repeated
SVDs. Since HDD only consists of density-density inter-
actions, no fermionic sign appears in e−iΔtHDD .

FIG. 2. Graphical representation of a FTPS for multi-orbital
AIM. Separating bath degrees of freedom leads to a forklike
structure. In this picture, a two-orbital model is shown, with four
bath sites in each orbital. Orbitals are labeled A and B, and the
arrows denote the spin. Each spin-orbital combination has its own
bath sticking out to the right. As in Fig. 1, the vertical lines are the
physical degrees of freedom [all of dimension two, for empty
(respectively, occupied) bath sites]. All other lines are bond
indices, and like in the MPS, they are summed over. As
mentioned in the text, the bath is represented in star geometry
because of the smaller bond dimensions needed. The bath sites
are ordered according to their on-site energies. Two example
hoppings V1 and V2 are drawn.

DANIEL BAUERNFEIND et al. PHYS. REV. X 7, 031013 (2017)

031013-4

Fork Tensor Product State  
(ForkTPS)

D. Bauernfeind et al.  
Phys. Rev. X 7, 031013 (2017)

• Bath fitting

• Need to go beyond MPS (fork tensor)

7

reads

ĤK = U
X

m

n̂m"n̂m# + U 0
X

m 6=m0

n̂m"n̂m0#+

+ (U 0 � J)
X

m<m0,�

n̂m�n̂m0� � J
X

m 6=m0

d̂†m"d̂m#d̂
†
m0#d̂m0"

+ J
X

m 6=m0

d̂†m"d̂
†
m#d̂m0#d̂m0" (25)

where m,m0 run from 1 to 3, U and U 0 are the intra- and
inter-orbital Hubbard interaction, and J is the Hund’s
coupling. d̂m� and d̂†m� are fermionic annihilation and
creation operators on bandm. For the sake of consistency
with real material calculations, we choose U 0 = U � 2J
[63]. Each impurity couples to a bath as in the SIAM.
While it is not the most generic case (which would have
non-diagonal bath couplings), we expect our approach to
generalize without major di�culty.

imp. 1 up
imp. 3 up

imp. 3 down

branching tensor

imp. 2 down

imp. 2 up

imp. 1 down

bath 3 down

bath 1 down

bath 2 down

bath 2 up

bath 3 up

bath 1 up

FIG. 7. T3NS for three-orbital calculations: The physical
basis of all 3 impurities and their associated bath sites are
split into spin-up and spin-down representations (empty or
occupied). The resulting 6 (spinless) impurity orbitals are
connected by branching tensors. The bath sites are attached
as MPS-like chains.

As density of states we use the same semi-circular den-
sity of states as before and obtain the bath parameters
as for the SIAM. Each bath is modeled by Nb = 99 bath
sites, if not stated otherwise. As interaction parameters
we consider U/D = 2 and J/D = 0.3. In all calculations,
we set ⌘ = 0.

The simulations are carried out using 2TDVP until t =
20D�1 and 1TDVP until the final time of t = 180D�1.
We use a tree tensor network, more specifically a T3NS
[64] where trees are constructed only of rank-three ten-
sors. These are either branching tensors with three legs
establishing a tree geometry or physical tensors identi-
cal to matrix-product state tensors with two auxiliary
connecting legs and one physical leg carrying the physi-
cal degrees of freedom (see Fig. 7). This representation
is more adequate to multiorbital impurity problems and
contains the fork geometry of [42] as a special case with-
out the need of numerically costly four-leg tensors. The
TDVP implementation follows [65].

(a)

(b)

FIG. 8. Spectral function A(!) for a three-orbital model
with Hubbard–Kanamori interaction. All calculations are
at truncated weight wt = 10�10 and without broadening
(⌘ = 0). Real-time results stem from a time evolution up to
tmax = 120D�1 with a maximum bond dimension m = 1024.
For the tilted (MaxEnt) method at angle ↵ = 0.05 the cor-
responding values are tmax = 180D�1 and m = 2048, for the
parallel (inversion) method at ⌧ = 1, tmax = 220D�1 and
m = 1024; in that case, an increased bath size Nb = 139 was
used. The post-processing for the parallel (inversion) method
used n = 3 contours at ⌧k 2 {1, 1.15, 1.3} with coe�cients
ak 2 {33.2,�57.8, 25.6} (rounded). The Friedel sum rule is
obeyed to an accuracy of 0.2% for the tilted (MaxEnt) data
and 0.02% for the parallel (inversion) data versus 0.8% in the
real-time calculation. (b) zoom into Fig. (a) with additional
data obtained from the tilted (extrapolation) method using
contours ↵ 2 [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], averaging over all
4th order contributions. The oscillations in the real-time re-
sult are now clearly visible. The tilted (MaxEnt) result us-
ing ↵ = 0.05 shows a similar unphysical slight dip between
!/D = 10�2 and 10�1 as for the SIAM.

We again use NRG results as a benchmark, since it
is currently the most accurate method available for low
frequencies. The Hubbard–Kanamori Hamiltonian in its
band-degenerate form has an SO(3) orbital symmetry
which makes it accessible to standard multiorbital NRG
[66–69] (without the need for interleaving the Wilson
chain [69–73]). Note that we do not exploit the SO(3)
orbital symmetry in our T3NS calculations as it typi-
cally does not appear in multiorbital simulations of real
materials.

M. Grundner, P. Westhoff, F. B. Kugler, O.P. , U. Schollwöck   
arXiv:2312.11705



• Pros :

• Real time (or imaginary time)

• Large baths size  (up to several hundreds).

• Larger impurities than NRG (5 bands or more).

• Good resolution at high frequencies (see multiplets in )

•  or finite  (purification or METTS = Maximally Entangled Typical Thermal State)

• Cons:

• Convergence vs L still very slow 

• Growth of entanglement/rank at long time   
Poor  resolution at low frequencies

• Not open source code to use [but we are working on it at the Flatiron Institute]

L

A(ω)

T = 0 T

Δω ∼ 1/L

t
ω

60Tensor network solver
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61A recent development : complex time 

Imaginary time 
Low  

Requires analytic continuation
χ

Real time 
Large   

Long time limitation
χ

Complex time 
Low   

Close enough to real axis to reconstruct
χ

2

Re(z)

≠Im(z)

–0

Real Time

Im
ag

in
ar

y
T

im
e

Fig. 1. Illustration of various complex time contours in the
complex plane.

II. TIME EVOLUTION IN THE COMPLEX
PLANE

We introduce a parameterization for the complex time
contour

z(t, –0) :=
⁄

t

0
e≠i–(t

Õ)dtÕ, (3)

as sketched in Fig. 1. The angle of the complex time con-
tour at time t is given by –(t) = –0f(t), where –0 œ [0, fi

2 ]
defines the overall scale of the angle and f(t) is a real-
valued, positive, smooth function of time t with a range
[0, 1]. Real- and imaginary-time evolutions are recovered
for constant –(t) = 0 and –(t) = fi/2, respectively. Di�er-
ent contour choices o�er varied strategies to suppress the
high-energy excited states in |Â(t, –0)Í. Although our ap-
proach is not limited to any specific complex time contour,
a fixed form –(t) = –0e≠ t

2fi is employed for the rest of
the paper. On such a contour, |Â(t, –0)Í is suppressed to
the low-energy manifold after a short time period, where
it remains in near-unitary evolution for later times. More
detailed discussions on complex time contours can be
found in Appendix A.

The time-dependent correlation function defined in the
complex time plane now takes the form

G(t, –0) = ≠i ÈÂ0| Ô1 exp
Ó

≠iz(t, –0)
1

Ĥ ≠ E0
2Ô

Ô2 |Â0Í ,

(4)

whose evaluation relies on computing the time-evolved
state

|Â(t, –0)Í = exp
Ó

≠iz(t, –0)
1

Ĥ ≠ E0
2Ô

Ô2 |Â0Í (5)

for a time interval t œ [0, tmax]. Compared to the real-time
evolution, the complex-time evolution with Im(z) < 0
gradually evloves |Â(t, –0)Í into the low-energy manifold
with lower entanglement than its counterpart |Â(t, 0)Í,
which in general requires an MPS representation with
a smaller bond dimension ‰ and is consequently less
demanding to compute. One limiting case is the imaginary
time evolution, where |Â(t, fi/2)Í exhibits nearly constant

entanglement [50] and approaches the ground state at
large time t.

The remaining task is to extract the spectral function
from G(t, –0). As it is connected to A(Ê) through a
Riemann integral (Appendix A), a common approach is
to employ analytic continuation [51], which, however, is
subject to some degree of uncertainty and unavoidable
broadening of high-energy features due to the non-unitary
kernel involved. To circumvent this issue of ill-conditioned
inversion, we propose to first reconstruct the real-time
correlation function G(t, 0) from G(t, –0). To achieve this,
we can formally expand the real-time correlator in powers
of ≠–0 as

G(t, 0) = G(t, –0) +
ÿ

n=1

(≠–0)n

n!
ˆn

ˆ–n

0
G(t, –0). (6)

To obtain the summands (≠–0)n

n!
ˆ

n

ˆ–
n
0

G(t, –0), denoted as
g(n)(t, –0) hereafter, one only needs to evaluate terms
(Appendix B)

„(n)(t, –0) := ÈÂ0| Ô1(Ĥ ≠ E0)n
|Â(t, –0)Í , (7)

namely the overlap between |Â(t, –0)Í and |„n
Í = (Ĥ ≠

E0)nÔ†
1 |Â0Í. The latter can be obtained straightforwardly

by standard MPO-MPS multiplication. We caution here
that while the expansion Eq. (6) is exact and convergent
(Appendix C), its convergence rate depends on the specific
choice of –0. To avoid numerical inaccuracies associated
with the computation of higher-order g(n)(t, –0), which
involves repeated MPO-MPS multiplication with trunca-
tion, it is advisable to carefully choose –0 such that the
series converges within the first few terms, yet without
being too small and thereby impeding the accuracy of
the calculation of long time evolution. In such cases, the
zero-th order term G(t, –0) should already capture the
main features of the spectra, in particular those related
to low-energy excitations as they are hardly quenched in
|Â(t, –0)Í. The higher-order terms g(n)(t, –0), which are
linear combinations of „(lÆn)(t, –0), contain transitions
between the ground state |Â0Í and higher-energy states
generated by powers of the Hamiltonian Ĥ. Their contri-
bution, although anticipated to be small, is expected to
systematically improve the high-energy spectral features.

III. BENCHMARK ON SINGLE-IMPURITY
ANDERSON MODEL

We demonstrate the e�cacy of our approach using the
one-band single impurity Anderson model (SIAM). Its
Hamiltonian reads

Ĥ = Ĥloc + Ĥbath

Ĥloc = ‘d

ÿ

‡

n̂d‡ + Un̂døn̂d¿,

Ĥbath =
Nb≠1ÿ

b=0;‡
‘bn̂b‡ +

Nb≠1ÿ

b=0;‡

1
vbĉ†

b‡
d̂‡ + h.c.

2
(8)

t

τ

X. Cao, Y. Lu, M. Stoudenmire, O. P.  
arXiv:2311.10909

M. Grundner, P. Westhoff, F. B. Kugler, O.P. , U. Schollwöck   
arXiv:2312.11705



• Fermi liquid Im Σ(ω) ∼ ω2
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Anderson impurity model 
1 orbital,  flat bath of bandwidth D
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63Quantum impurity solvers: challenges

  

Goal: unify both pictures

… in the simplest way

Capture Mott physics
DMFT: local physics

Capture long-ranged 
bosonic fluctuations
Spin fluctuation theory

with a control parameter
cluster size

…
Atom

 Bath

• Larger, more complex systems (spin orbit, low symmetry, many orbitals, large clusters)

• Faster (explore parameter space, e.g. compute structure).

• High precision (e.g. for transport at low T)

• Low frequency, temperature. 

• Transport computations (require high precision self-energy at low  )

• Real time, out of equilibrium.

ω

Algorithm development is crucial here !
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Two body quantities



• Static susceptibility at simple q :  solve DMFT in ordered phase

65Susceptibilities

χ ∝
∂m
∂h

|h=0

• Need a more general method for 

• Frequency dependency

• Momentum dependency (incommensurate order)

• General χ tensor (multiple possible instabilities)



• Quantum linear response theory 
Response of operator A to a field coupled to B

66Kubo formula

χAB(t − t′ ) = − iθ(t − t′ )⟨[A(t), B(t′ )]⟩

        E.g. : susceptibilities                                , conductivity (A = B = J)

• Requires the computation of two-particle Green functions

A = Aabc†
acb B = Bcdc†

c cd

• A, B : quadratic in the fundamental operators

∼ ⟨c†
a(t)cb(t)c†

c (0)cd(0)⟩

A = B = ∑
iσ

(−1)σc†
σicσi



67Two particle Green functions

G(2)
āab̄b

(x1, x2, x3, x4, τ1, τ2, τ3, τ4) ≡ − i⟨Tτc†
ā(x1, τ1)ca(x2, τ2)c†

b̄
(x3, τ3)cb(x4, τ4)⟩

a,b : multi-index orbital, spin 

• Definition

• Rank 4 tensor, with 3 frequencies/momenta

• Non interacting case (Wick theorem)

+=G(2)
āab̄b

ā

a b̄

b ā

a b̄

b

G0aāG0bb̄ −G0ab̄G0bā

G(2)
āab̄b

(k, k′ , q, ν, ν′ , ω) =

q, ω

ā, k + q, ν + ω b, k′ + q, ν′ + ω

a, k, ν b̄, k′ , ν′ 

G(2)



68Two particle Green functions

G(2)
āab̄b

(x1, x2, x3, x4, τ1, τ2, τ3, τ4) ≡ − i⟨Tτc†
ā(x1, τ1)ca(x2, τ2)c†

b̄
(x3, τ3)cb(x4, τ4)⟩

ā, k + q, ν + ω b, k′ + q, ν′ + ω

a, k, ν b̄, k′ , ν′ 

G(2)

a,b : multi-index orbital, spin 

• Definition

• Rank 4 tensor, with 3 frequencies/momenta

• Perturbative expansion

+=G(2)
āab̄b

ā

a b̄

b ā

a b̄

b
F

ā

a b̄

b
+

reducible vertex FGaāGbb̄ −Gab̄Gbā

G(2)
āab̄b

(k, k′ , q, ν, ν′ , ω) =

Full propagator

• In Fermi liquid, interactions between quasi-particles.

q, ω



69Generalized susceptibilities

• Susceptibility : contract with A and B, sum over frequencies/momenta

• Generalized susceptibility (remove disconnected part,  <A>)

=
ā

a b̄

b
F

ā

a b̄

b
+χ̃āab̄b

χ̃0 āab̄b

χ(q, ω) = ∑
νν′ kk′ 

χ̃āab̄b(q, k, k′ , ω, ν, ν′ )Aāa(k)Bb̄b(k′ )

χAB(q, ω) = A B
q, ω q, ω

A B
q, ω q, ωF+

Lindhard function Vertex corrections



70Reminder : Dyson Equation

• Dyson equation for the one particle Green function

G = + Σ + +Σ Σ Σ Σ Σ +…

Σ = G−1
0 − G−1G = G0 + G0ΣG

• Self-energy : 1PI (particle irreducible) diagrams



• Reducibility in particle-hole channel

71

Fνν′ ω
aābb̄;kk′ q = Γνν′ ω

aāb;̄kk′ q + ∑
cc̄dd̄,k1,ν1

Γνν1ω
abāb̄;kk1q

χ̃ν1ω
0cc̄dd̄,k1k1q

Fν1ν′ ω
dd̄bb̄;k1k′ q

b̄

b
= +Γ Γ FF

ā

a b̄

b

a

ā

b̄

b

a

ā

d

d̄

c̄

c

•                              : Irreducible vertex in the particle-hole channelΓaābb̄(k, k′ , q, ν, ν′ , ω)

Bethe-Salpeter equation

a, k + q, ν + ω b̄, k′ + q, ν′ + ω

ā, k, ν b, k′ , ν′ 

• Matrix equation  
grouping indices 
 
diagonal in (q,ω)

I = (a, ā, k, ν) J = (b, b̄, k′ , ν′ )

F = Γ + Γχ̃F



• Relation (exact) between the irreducible vertex Γ and χ

72Bethe-Salpeter equation

= + + + …Γ Γ Γχ̃
χ̃0

χ̃ = χ̃0 + χ̃0Γχ̃ ⟺ Γ = χ̃−1 − χ̃−1
0

• Approximations for Γ

• RPA : 

• DMFT ?

Γ ∝ U



73DMFT
Cf. A. Georges et al. 

Rev. Mod. Phys.1996

Φ[G] ≈ ∑
i

ϕatomic[Gii]

Γlattice
ijkl =

δ2Φ
δGjiδGlk

Σlatt
ij =

δΦ
δGji

= δijΣimpΓlattice
ijkl ≈ δi=j=k=lΓimp

• and DMFT approximation is 

Γlattice(k, k′ , q, ν, ν′ , ω) ≈ Γimp(ν, ν′ , ω)

• Since 



74Susceptibilities in DMFT
Cf. A. Georges et al. 

Rev. Mod. Phys.1996

χ̃−1
lattice = Γlattice + χ̃−1

lattice,0Γimp = χ̃−1
imp − χ̃−1

imp,0

• Solve DMFT

• Compute impurity two-particle functions

• Use BSE for impurity and lattice

Gimp

χ̃imp

Γimp Γlattice

G(2)
imp

χ̃imp,0 χ̃lattice χlattice(q, ω)

Does not feedback in DMFT self-consistency loop

M. Jarrell et al., ‘90



• Magnetic susceptibility 

• Non interacting case. Lindhard function 

• Mott insulator: charge gap vs low energy spin excitations

• Conductivity

• Cancellation of vertex corrections by symmetry in DMFT, but not in cluster.

75Are vertex corrections important ?

χcharge = χspin ∝ G0G0

χAB(q, ω) =
q, ω q, ω q, ω q, ω

F+



• 1 band Hubbard model, 2d square lattice, DMFT.

76Simple example
M. Jarrell 92 
Curves from T. Schaefer

χ(q = (π, qy), ω = 0)

π

χ(q, iΩ0) =
A

(q − QAF)2 + ξ−2

Ornstein-Zernike form

0.0
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Illustration with a Hund metal



• A correlated Hund’s metal (  eV,  eV)

• Spin orbit coupling (  eV)

• Fermi liquid for 

• Superconductivity 

• 3 sheet Fermi surface

• Clean samples/experiments.

U = 2.3 J = 0.4

λ = 0.1 − 0.2

T < TFL ≈ 25K

Tc ≈ 1.5K

78Sr2RuO4

Case study: Fermi surface of Sr2RuO4

⌅ strong correlations (U = 2.3 eV)
⌅ Hund physics (J = 0.4 eV)
⌅ spin-orbit coupling (⁄ = 0.1 ≠ 0.2 eV)

⌅ Fermi liquid (TFL ¥ 25 K)
⌅ superconductivity (TC ¥ 1.5 K)
⌅ Van Hove singularity close to EF

cubic tetragonal

E

dxy

dxz ,dyz

t2g

A. Georges, lecture notes (2017)
sbeck@flatironinstitute.org TRIQS summer school 2023 7

Sr2RuO4 general

HALL

Dependence of the Hall coefficient in Sr2RuO4 
on temperature and impurity concentration.4

2x sign change

Sr

Ru
O

ARPES

Laser-ARPES Fermi surface of 
Sr2RuO4 compared to theory.3  

Benc
hmar
kCT
QMC 

: 
MPS

ARPES

THEORY

Fermi surface.  
Theory vs ARPES A. Tamai, M. Zingl et al. 

Phys. Rev. X 9, 021048 (2019)
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 : spin responseSr2RuO4

H. Strand, et al 
Phys. Rev. B 100, 125120 (2019)

Magnetic response 
nature of magnetic fluctuations ?

�spin(q,! = 0)
<latexit sha1_base64="JYbSuSC4PawKLf1GvOU0CZjQ/Vg="></latexit>

• Bethe Salpeter + DMFT vertex computation

• Quasi-local spin fluctuations due to Hund’s coupling 
•



• Inelastic x-ray spectra

80 : Spin-orbital separationSr2RuO4

The RIXS intensity around qISF shows a conical shape with an isolated
intensity maximum at 0.06 eV. The intensity remains centered at qISF

up to 0.25 eV, consistent with the vertical INS intensity profile at qISF

observed below ~0.06 eV30.
We now interpret the low-energy RIXS data in terms of theoretical

spin and orbital susceptibilities χSμSμ and χLμLμ (μ = x, y, z), which we
computed in DMFT by solving the Bethe-Salpeter equation using the
local DMFT particle-hole irreducible vertex within the Ru 4d-t2g sub-
space (SupplementaryNote 3).We employed the sameeffectivemodel
and interaction parameters that have been established in several pre-
vious studies31–33. Theoretical RIXS spectra are constructed by com-
bining different components of the spin and orbital susceptibilities
with matrix elements for the RIXS cross section (Supplementary
Note 4). Figure 3 shows the comparison of the experimental (Fig. 3a)
and theoretical DMFT (Fig. 3b) RIXS spectra along the previously
defined high-symmetry momentum paths in the Brillouin zone. To
highlight the importance of the DMFT dynamical vertex corrections,
we also show the perturbative RPA spectra (without dynamical vertex)
in Fig. 3c. It is evident that the DMFT spectra excellently capture the
overall dispersion and the distribution of momentum and energy
dependent maxima of the RIXS data. Specifically, the low-energy
intensity is peaked at qISF and also extrapolates continuously to the
corresponding quasistatic intensity close to zero energy32. Moreover,
thebroadermaximumemanates from0.2 eV atq = (0, 0) anddisperses
more steeply along the (H,H) direction. In contrast, the spectral weight
distribution in RPA fails to capture the low-energy intensity maximum
at qISF and yields a spuriously sharp feature that extends from high
energy to zero energy around the Γ point.

This difference betweenDMFTandRPAoriginates from thedistinct
behavior of the spin andorbital dynamical responses. Figure 4 shows the
intensity plots of theoretical orbital (LL) and spin (SS) susceptibilities
along the q= (H, 0) and (H,H) directions, obtained by averaging all
components 1

3

P
μ χLμLμ and 1

3

P
μ χSμSμ . The vertex corrections in DMFT

lead to the clear energy separation of spin and orbital contributions
predicted for the Hundmetals (left panels). The spin response accounts
for almost all the spectral weight at low energies up to ~0.2 eV, and
becomes negligible above this scale. The concentrated spectral weight
around qISF and weak ridge scattering around q= (−0.3, 0) and (−0.7, 0)
excellently reproduce the experimental observations. The orbital
response sets in at higher energies >0.2 eV and shows broad maxima
centered around commensuratemomenta q= (−0.5, 0) and (−0.5,−0.5).
In RPA (right panels), on the other hand, both the spin- and orbital
responses disperse and have spectral weight over the entire energy
range. The RIXS data thus provide direct and quantitative evidence for
the spin-orbital separation in correlated Hund metals as captured by
DMFT. Further improvement between the experiment and theory could

be obtained by amore rigorous treatment of the resonance effect in the
RIXS cross section, in particular on the spectral weight maximum of the
orbital excitations around q = (−0.5,−0.5).

It should also be noted that the spin-orbit coupling (SOC) effects
have been considered only outside the vertex in our DMFT calcula-
tions. Comparison to angle-resolved photoemission experiments31 and
inelastic neutron-scattering32 have justified this procedure on the level
of the single-particle spectra and static magnetic susceptibility. The
excellent agreement we find in the present work supports the strategy
also for the dynamic susceptibility. This situation is contrasted to the
spin-orbital J physics in theMott insulating counterpart Ca2RuO4

27 and
the cubic K2RuCl634, whose magnetic ground states are determined by
the interplay between the ionic J multiplets and the strength of inter-
site exchange interactions. While the t2g electrons of Sr2RuO4 carry
orbital angular momentum, the finite bandwidth of the itinerant
electrons partially quenches the orbital momentum. Nonetheless, the
SOC brings about significant modification of the single-particle band
structure at certain high-symmetry momenta in the Brillouin zone,
when multiple bands are degenerate in energy. It is well known that in
Sr2RuO4 this degeneracy occurs in the diagonal direction in the reci-
procal space, which leads to the separation of the Fermi-surface
sheets31,35. Correspondingly, the effect of SOC on the dynamical sus-
ceptibilities is most pronounced in the low-energy spin fluctuations at
q = (0, 0) and at qISF, while the effect on the orbital fluctuations
remains minor (Supplementary Fig. 8).

The current findings also have implications for the microscopic
mechanisms of the superconductivity in Sr2RuO4. As primary candi-
dates of bosonic fluctuations mediating the Cooper pairing, the spin
and orbital dynamical susceptibilities enter the Eliashberg equations,
which in turn determine the SC order parameter. Our combined RIXS
and DMFT+SOC results provide a comprehensive description of the
momentum distribution, dispersion relation, and spin-orbit composi-
tion of low-energy magnetic excitations, which can serve as crucial
input for approximate solutions of the Eliashberg equations. Recent
theoretical studies suggest that static (RPA) and dynamic (DMFT)
vertex approximations lead to qualitatively different SC ground
states33,36–38. Although computational challenges prohibit rigorous
extrapolation of our theoretical results to low temperatures near
Tc = 1.5 K, the RIXS data point to the critical role of dynamical vertex
corrections also for the microscopic description of the super-
conducting order parameter.

In conclusion, we have presented Ru L3 RIXSmeasurements of the
dynamical response functions in the unconventional superconductor
Sr2RuO4 over a broad range of energy and momentum. We have
identified several branches of spin and orbital excitations and revealed
the separation of energy scales associated with these two sets of

Fig. 3 | Modelling of RIXS spectra by DMFT+SOC calculations. a Expanded col-
ormap of the RIXS intensity within the t42g electron configurations. b Simulation of
RIXS intensity based on the spin and orbital susceptibilities calculated by the

dynamical mean-field theory with spin-orbit coupling (DMFT+SOC). c Simulation
from the susceptibilities calculated with the random phase approximation (RPA).

Article https://doi.org/10.1038/s41467-023-42804-3
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RIXS spectral 
vs DMFT

Article https://doi.org/10.1038/s41467-023-42804-3

Distinct spin and orbital dynamics in
Sr2RuO4

H. Suzuki 1,2,3,15 , L. Wang 1,15, J. Bertinshaw1, H. U. R. Strand 4,5, S. Käser1,6,
M. Krautloher 1, Z. Yang1, N. Wentzell 7, O. Parcollet7,8, F. Jerzembeck 9,
N. Kikugawa 10, A. P. Mackenzie 9, A. Georges7,11,12,13, P. Hansmann 1,6,9,
H. Gretarsson1,14 & B. Keimer 1

The unconventional superconductor Sr2RuO4 has long served as a benchmark
for theories of correlated-electron materials. The determination of the
superconducting pairing mechanism requires detailed experimental infor-
mation on collective bosonic excitations as potential mediators of Cooper
pairing. We have used Ru L3-edge resonant inelastic x-ray scattering to obtain
comprehensive maps of the electronic excitations of Sr2RuO4 over the entire
Brillouin zone. We observe multiple branches of dispersive spin and orbital
excitations associated with distinctly different energy scales. The spin and
orbital dynamical response functions calculated within the dynamical mean-
field theory are in excellent agreement with the experimental data. Our results
highlight the Hund metal nature of Sr2RuO4 and provide key information for
the understanding of its unconventional superconductivity.

Conduction electrons in quantum materials form itinerant quasi-
particles that propagate coherently over mesoscopic length scales,
while being renormalized by local interactions akin to those in atomic
physics. This dichotomy spawns a large variety of collective quantum
phenomena and remains one of the major challenges of modern
condensed matter physics, as epitomized by the Hubbard model
describing electrons on a latticewith a single orbital per site, whichhas
defied a complete solution until today—60 years after it was first
introduced. Coulomb repulsion of opposite-spin electrons residing on
the same site drives the electron system toward aMott insulating state
and induces antiferromagnetic spin correlations, which have been
invoked as a mediator of Cooper pairing in unconventional

superconductors such as cuprates1 and nickelates2. Whereas bona-fide
realizations of the Hubbardmodel are rare, studies on transitionmetal
oxides3 and iron-based superconductors4 have led to the realization
that atomicHund’s rule interactions among conduction electrons with
multiple active d-orbitals are a source of strong electron correlations.
In principle, treating spin and orbital correlations on an equal footing
further increases the challenge in the theoretical description of the
interacting electron system. However, recent dynamical mean-field
theory (DMFT) studies of the broad family of “Hund metals"5 have
suggested that the Hund’s rule interactions drive a large-scale differ-
entiation of spin and orbital screening energies6,7. Indirect manifesta-
tions of this “spin-orbital separation" include the formation of local
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Conclusion
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`Impurity’Solvers 
Algorithms

Quantum  
Monte Carlo Methods

ED, NRG  
Tensor Networks.DMRG

Approximate 
Solvers, IPT, NCA etc.

Cuprates

GW+DMFT
Embedding 

Methods 
SEET, DMET, 
Full-Cell etc.

Cluster  
Embedding 

DCA,C-DMFT, 
Nested… Out of Equilibrium 

t-DMFT

`Extended’  
DMFT 

(EDMFT)

DMFT 
Conceptual 

Core

Applications  
To Models

DFT+DMFT 
Applications to 

Materials

Oxides

Rare-Earths

Actinides

Organic 
Materials

Etc…

Mott/Hubbard

Hund

Kondo

Etc…

Molecules 
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Vertex-based 
Extensions 

DΓA, TRILEX,  
Dual methods

Extensions
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NESS

Disorder + 
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Configuration- 
Interaction,  
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• Tutorials : TRIQS, abinit +DMFT.

• Lectures:

• M. Ferrero today: CTQMC

• D. Sénéchal on Monday: ED, cluster and application

• S. Beck and A. Hampel on Monday:  applications to materials.

• F. Kugler on Tuesday:  NRG

• A. Toschi on Wednesday:  Extensions of DMFT based on vertex (D A)

• P. Werner, M. Eckstein on Wednesday: Non equilibrium DMFT.

Γ
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• The classic.  
A. Georges, G. Kotliar, W. Krauth and M. Rozenberg,  
Rev. Mod. Phys. 68, 13, (1996) 

• On realistic computations (DFT + DMFT) 
G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. Marianetti,  
Rev. Mod. Phys. 78, 865 (2006)

• On Quantum Monte Carlo (DMFT) Impurity solvers 
E. Gull et al.  
Rev. Mod. Phys. 83, 349 (2011)

• On Cluster DMFT methods  
T. Maier et al.  
Rev. Mod. Phys. 77, 1027 (2005)

• On Vertex and DMFT extensions  
G. Rohringer et al. Rev. Mod. Phys. 90, 025003 (2018) 

84DMFT : some references



Jülich Autumn School on Correlated Electrons 
Book series – available as free eBooks 

https://www.cond-mat.de/events/correl.html

Also: recent book by V.Turkowski (Springer)
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Thank you for your attention


