
Interna onal Summer School  
Computa onal Quantum Materials 

 
My poster in one 

minute… 



Wetting Critical behaviour in  a Metal-Mott insulator Interface

We study a Mott insulator slab in contact with a metallic one away from 
particle-hole symmetry (Fig 1) by the Gutzwiller approximation, both the 
conventional one and the so-called ghost-Gutzwiller approximation that gives 
access to the Hubbard bands and thus to the Kondo proximity effect in the Mott 
insulator.

The first order nature of the Mott transition away from particle-hole symmetry 
within the Gutzwiller approximation allows for a wetting critical behaviour 
characterised by a metal wetting layer that grows logarithmically approaching 
the first order transition, thus realizing a surface critical phenomenon.
Such critical behaviour shows up both in the electron density and quasiparticle 
residue.

Fig 1: metallic layers 
coupled to Mott insulating 
layers by hopping t

A.  M. Tagliente,  M. Fabrizio



Stability of Quantum Spin Liquids inWeak Mott
Insulators with a Spin-Orbit Coupling
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Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Motivation

Enhanced charge fluctuations in the weak Mott insulating regime of the

triangular lattice Hubbard model gives rise to the ring-exchange interaction.

The ring-exchange interaction can lead to the chiral spin liquid (CSL) or a

valence bond solid (VBS) for some values of t/U .

How robust are these exotic phases in the presence of a weak spin-orbit

coupling (SOC)?

Triangular lattice Hubbard model in presence of a SOC

Hubbard model on the triangular lattice, with a SOC term breaking inversion.

H =
∑
ijαβ

t̃ij,αβc†
iαcjβ + U

∑
i

ni↑ni↓, (vij = −vji)

t̃ij,αβ =

{
tijδαβ + ivij · σαβ i, j nearest neighbours

0 otherwise.

tij = t, and vij = vzẑ. Working in the limit of a weak SOC, ie |v|/t < 1.
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(a) Three types of rings on the triangular lattice (ijkl), (b) sign structure of the vij,

(c) Phase diagram in the absence of a SOC (vij = 0, Dz = 0, Jr1 = 0) [2].

Simplified spin model and iDMRG specifications

Strong-coupling expansion upto O(t̃4/U 3) to obtain an effective spin model.

Heff =
∑
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The conventional ring-exchange interaction (without SOC):

Hring =
∑

(ijkl)∈R

Jr ((Si · Sj) (Sk · Sl) + (Sj · Sk) (Sl · Si) − (Si · Sk) (Sj · Sl)) .

SOC-mediated spin bilinear is the Dzyaloshinskii- Moriya interaction.

The leading order SOC-mediated ring exchange term:
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Treating Dz and Jr1 as independent parameters. J1, J2, J3 and Jr are

parametrized in terms of t/U .

Infinite density matrix renormalization group (iDMRG) has been used to find

the ground state quantum phase diagram [3].

We used cylindrical geometry with Lx = 2, Ly = 6, and bond dimension

χ = 1600.

Quantum phase diagrams from iDMRG

Starting from a CSL (VBS) with t/U = 0.097 (t/U = 0.105) in left (right) subfigure in the absence of a SOC.

Turning on the SOC stabilizes the CSL (VBS) phase along an elongated narrow region where Dz/Jr1 ≈ 0.5.
Stability is a result of compensation between the Dzyaloshinskii-Moriya (Dz) interaction and the leading-order SOC-

mediated ring-exchange (Jr1) interaction.

Quantum phases in presence of SOC

The 120◦ (peaked at S(K)), CSL (χ 6= 0), VBS (peaked at Dn(M)) phases can arise in the absence of a SOC.

In the CSL phase, entanglement spectrum breaks inversion symmetry and has a characteristic degeneracy pattern

[2, 4] of the Kalmeyer-Laughlin state.

The SOC leads to a non-zero handedness ω, this is used to sub-classify the 120◦ ordered phases.

120◦
+ has ω > 0, 120◦

− has ω < 0. In absence of SOC, 120◦ order has ω = 0.
A new long-ranged magnetic ordered (MO) phase with peaks at S(K), correlation length is shorter than 120◦

±.
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∑

ij
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Heuristic model: Stability of the CSL phase

In the limit Dz � Jr1 (in 120◦
− phase), Heff,A =

∑
〈i,j〉 DzS

[x
i S

y]
j .

In the limit Jr1 � Dz (in 120◦
+ phase), Heff,B ≈ −1

2
∑

〈i,j〉 Jr1S
[x
i S

y]
j , where the four-spin term has been decoupled.

In the region of stability: Heff,A + Heff,B ≈ 0 =⇒ Dz/Jr1 ≈ 0.5 (iDMRG results are within 12%).

The extent of the CSL can be understood using a renormalized DM-type interaction.
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∑
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where Λ = 0.1284, this nonzero value accounts for the eventual disappearance of the CSL phase. The value of
Λ indicates that CSL should be stabilized until Dz/J1 ≈ 0.097, this is close to the iDMRG value of Dz/J1 = 0.13.

Heuristic model - continued
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Conclusions

The CSL and VBS phases of the triangular

lattice Hubbard model can be stabilized in

the presence of a weak SOC.

The stabilization is a result of compensation

between two types of SOC-mediated spin

interactions: the Dzyaloshinskii- Moriya

interaction and the leading order SOC-

mediated ring-exchange interaction.

Essential features of the compensation

mechanism captured by our heuristic model,

including the ratio of Dz/Jr1 ≈ 0.5 for
compensation, and extent of the CSL phase.
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Orbital Competition in Bilayer Graphene’s 
Fractional Quantum Hall Effect
Bishoy Kousa, The University of Texas at Austin

• Bernal Bilayer graphene in a magnetic 
field:
• Large even denominator gaps measured
• Nearly degenerate 𝑛 0,𝑛 1 Landau Levels

• Exchange interactions with the negative 
energy sea lifts this degeneracy and 
compete with single particle splitting

• Where do we get pure  correlations

arXiv:2402.10440



An Improved Two‐Particle Self‐Consistent Approach

One of the Important models for the study of 
cuprates is the 2D Hubbard model

• TPSC is an approach to solve the 2D Hubbard
model

• TPSC has been used to study the
antiferromagnetic pseudogap (T*) as it
reproduces ARPES measurements in
electron‐doped cuprates.

• However, TPSC is NOT valid deep below the
T* line.

Thus, we propose an improvement to the TPSC
approach called TPSC+ to solve this problem

Experimental electron‐doped cuprates
phase‐diagram of 𝑵𝒅𝟐 𝒙𝑪𝒆𝒙𝑪𝒖𝑶𝟒 𝒚

C. Lahaie, C. Gauvin‐Ndiaye, Y.M. Vilk, A‐M. S. Tremblay

𝐻 ∑
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𝑡 𝑐 𝑐 𝑐 𝑐 𝑈∑𝑛 ↑𝑛 ↓ T*

Motoyama, Nature 445, no 7124 :186‐89.
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Wavelet-Representation of Two-Particle 
Correlation Functions and Diagrammatic Equations

• Wavelet-Transform:

• Compact representation of Two-Particle Quantities

• Diagrammatic Equations in Wavelet Basis

E. Moghadas, N. Dräger, A. Toschi, J. Zang, M. Medvidović, D. Kiese, A. Millis, A. Sengupta,       
S. Andergassen, D. Di Sante
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Nickelate and cuprate superconductors

[W. Sun et al. 2024]

[M. Kitatani et al. 2020]

Nickelates Cuprates
O

OCu

[N. Kowalski et al. 2021]

[Y. T. Tseng et al. 2023]

[C. Gauvin-Ndiaye et al. 
2024]



The Phonon Polariton is a 
hybrid mode: we want to 
derive the weight of the two 
components

Relativistic corrections to LO‐TO Splitting

phonon photon

Large phonon 
component

Large photon
component
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Entanglement in the Hubbard Model
• Two-site reduced density matrix from 




‣ Negativity


‣ Mutual Information


• Results for small clusters


[G. Roosz, A. Kauch, FB, Karsten Held 2023]

G(2), G(4)

[M. Quin et.al 2022]

Entanglement?



Phases and Phase Transition in Disordered q-state Clock Model
Gaurav Khairnar1, Vishnu PK2, Rajesh Narayanan2, Thomas Vojta1

1Missouri University of Science and Technology, Rolla, USA
2 Indian Institute of Technology, Madras, India

Phase Diagram:

𝑞 = 2 𝑞 = 6 𝑞 = ∞

Ising XYClock

e.g. Buckling Transition

Highlights:
• Multiple phases and phase transitions
• Strong disorder renormalization group theory predictions
• Expected multi-critical point
• Weak to strong disorder crossover



Momentum and finite doping effects in a Metal-Mott 
insulator interface
● We investigate the interface between a Mott insulator and a 

metal away from half filling using single site DMFT and DCA

● In this kind of interface there is penetration of metallicity in 
the Mott insulator characterised by a surface layer that 
develops a finite quasiparticle effect, known as Kondo 
proximity effect.  We study  how this phenomenon modifies 
the density profile in the Mott insulator when the chemical 
potential is away from the particle-hole symmetric point.

● In DCA, a cluster extension of DFMT, a momentum 
differentiation of the Mott transition occurs. We are 
interested in the interplay of this physics with the 
aforementioned proximity effect, in particular in the 
evolution of the Fermi surface inside the Mott insulator as 
well as the possible occurrence of a pseudogap or Fermi 
pockets

 

Gregorio Staffieri, Michele Fabrizio



Results
Ground	State	Energy
§ Using	ED,	obtain	the	ground	state	energy	eigenvalue	𝐸!	and	eigenvector	for	all	values	of	𝜉

§ Phase	boundaries	are	identified	by	peaks	in	− "!#"
"$!

§ Strong	qualitative	agreement	with	classical	phase	boundaries	–	no	evidence	of	ObD

FIG.	5:	Ground	state	energy	density,	𝜀!,	and	the	second	derivative	of	𝜀!	with	respect	to	𝜉	for	𝐿 = 4.	The	second	derivative	
spikes	at	the	classical	phase	boundaries	(grey	dashed	lines).

Phase	Diagram
§ The	static	structure	factor,	𝒮 𝑸 ,	reveals	the	magnetic	ordering	of	the	ground	state

• where	𝜇 = 𝑥, 𝑦, 𝑧	and	 ⋯ 	denotes	an	expectation	value	in	the	ground	state
§ Compute	at	four	high	symmetry	points	in	the	Brioullin	zone

§ 𝜞 = 𝟎,	𝑿 = 𝜋, 0 ,	𝒀 = (0, 𝜋)	and	𝑴 = 𝜋, 𝜋
§ Strong	qualitative	agreement	with	classical	phase	diagram	–	no	evidence	of	ObD

FIG.	6:	Structure	factors	coloured	according	to	the	classical	ordering	in	Fig.	2	obtained	by	ED	for	𝐿 = 4.

Observation	of	Order	by	Disorder
§ Identify	two	potential	signatures	of	order	by	disorder:
	 1.	 Energy	gap

§ The	energy	gap,	𝐸 − 𝐸!,	is	presented	in	Fig.	7
§ For	comparison,	semiclassical	results	are	depicted,	as	well
§ The	gap	from	these	three	methods	exhibit	strong	agreement	in	the	out-of-plane	phases

§ This	is	not	where	ObD	occurs	–	some	other	diagnosis	is	needed!

FIG.	7:	Energy	gap	obtained	via	ED	over	the	full	phase	diagram	for	𝐿 = 4.	Also	presented	are	results	of	semiclassical	
methods,	which	suggest	where	the	gap	can	be	obtained	directly	from	ED.	

2.	 In-plane	magnetization
§ Introduce	small	field	to	in-plane	antiferro-	(AFM)	and	ferromagnetic	(FM)	phases,	−∑% 𝒉% h 𝑺%

§ FM:	Field	is	added	uniformly,	𝒉% = ℎ cos𝜙 l𝒙 + sin𝜙 l𝒚
§ AFM:	Field	is	staggered,	𝒉% = −1 %ℎ cos𝜙 l𝒙 + sin𝜙 l𝒚

§ Without	ObD,	model	will	fully	polarize	along	q𝒉,	independent	of	𝜙
§ Quantum	mechanically,	states	polarize	more	strongly	along	𝜙 = 0, &

'
𝜋, (&

'
by 𝐶)

FIG.	8:	Ratio	of	magnetization	at	each	value	of	the	applied	field	angle	𝜙	to	the	average	magnetization	over	the	full	range	
of	𝜙	for	ℎ = 10"#	in	the	(a)	AFM	phase	and	(b)	FM	phase	in	the	ground	state	obtained	by	ED	for	various	system	sizes.

Order	by	Quantum	Disorder	in	the	Heisenberg-Compass	Model	on	the	Square	Lattice:
A	Perspective	from	Exact	Diagonalization

Subhankar	Khatua1,2,	Griffin	C.	Howson1,	Michel	J.	P.	Gingras2,	Jeffrey	G.	Rau1
1Department	of	Physics,	University	of	Windsor,	Windsor,	Ontario,	Canada	

2Department	of	Physics	and	Astronomy,	University	of	Waterloo,	Waterloo,	Ontario,	Canada

Motivating	Question
What	are	the	signatures	of	order	by	disorder	in	the	Heisenberg-compass	model	on	small	square	clusters?

The	Heisenberg-Compass	Model
§ Bond–dependent	magnetic	interactions	have	been	explored	for	generating	new	phases	of	matter	[1]

§ Typically	found	in	transition	metal	oxides	[2,3]
§ Leads	to	competing	interactions	which	can	not	be	simultaneously	satisfied	–	a	phenomenon	
known	as	frustration

§ A	simple,	yet	intriguing	bond-dependent	model	is	the	Heisenberg-compass	model	on	the	square	
lattice

FIG.	1:	Heisenberg-compass	model	on	a	square	lattice	with	bond	definitions.

§ Set	𝐽 = cos 𝜉	and	𝐾 = sin 𝜉,	which	fixes	the	energy	scale	to	units	of	 𝐽' + 𝐾' = 1
§ Classically,	there	are	six	regimes	in	the	range	of	𝜉 ∈ [ )0,2𝜋 	exhibiting	distinct	ground	states

FIG.	2:	Classical	phase	diagram	of	the	Heisenberg-compass	model	over	the	full	range	of	𝜉.

§ The	in-plane	ground	states	can	be	rotated	in-plane	without	any	cost	in	energy	–	U(1)	degeneracy
§ Not	a	symmetry	of	the	compass	term!

§ Only	discrete	𝐶)	rotation	about	the	}𝒛	axis	and	discrete	𝐶'	rotations	about	the	l𝒙	and	l𝒚	axes
§ Introduce	quantum	fluctuations	to	select	for	ground	states	that	are	related	by	these	symmetries	
of	the	Hamiltonian	–	a	phenomenon	known	as	order	by	disorder	[4].

Method
§ Solve	the	Hamiltonian	by	exact	diagonalization	(ED)	[6]

§ Provides	exact	ground	state	properties	for	small	clusters
§ Hilbert	space	scales	as	2* 	for	a	system	of	𝑁 𝑆 = ⁄1 2	spins

§ Discrete	translation	symmetry	→	work	in	momentum	space!
§ 𝑁	allowed	translations	→	𝑁	blocks	of	roughly	size	 ⁄2* 𝑁
§ Blocks	can	be	diagonalized	separately	using	Lanczos	methods	[7]

FIG.	4:	Effect	of	block-diagonalization	procedure	for	𝐿 = 3	at	𝜉 = 𝜋	(ferromagnet)	

ℋ = :
!" !

𝐽𝑺! = 𝑺" + 𝐾𝑆!
#𝑆"

#

Order	by	Disorder	(ObD)
§ Fluctuations	tend to suppress order,	but	this	is	not	always	the	case

§ A model	may	permit	some	accidental	classical	degeneracy which	is	not	protected by the
symmetry of	the	Hamiltonian

§ Fluctuations	(e.g. quantum	or	thermal	[5])	can	generate	an	energy	gap	between	the	true
symmetry protected degenerate	ground	states	and	nearby	excited	states

FIG.	3:	A	schematic	illustration	of	order	by	disorder.

Fluctuations
(e.g.	quantum,	thermal)

Discrete	Translation
Symmetry
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Conclusion
§ ED	reveals	a	phase	diagram	that	is	qualitatively	similar	to the	classical	phase	diagram
§ The energy gap can be read directly from some regions of the phase diagram, but not	where	ObD needs	to	be	diagnosed
§ The in-plane	magnetization	under	a	perturbing	field	reveals	that	the	system	favours	states	that	point	along	the	±l𝒙,±l𝒚	axes,	suggesting	that	these	are	the	symmetry	protected	ground	states	of	the	model	
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General Shiba mapping for 
on-site four-point correlation functions
Herbert Eßl, Matthias Reitner, Giorgio Sangiovanni & Alessandro Toschi

𝑈 ↔ −𝑈
𝛿𝜇 ↔ ℎ
ℎ ↔ 𝛿𝜇

S!
S"
S#

Re(Δ)
Im Δ
𝜌

Spin 
𝑆𝑈 2 $

Pseudospin 
𝑆𝑈 2 %

What’s new:   Four-point Green’s functions under Shiba mapping
Application to vertex divergences of Hubbard Atom

arXiv:2402.16115

Shiba Transformation

Hubbard 
model with 
bipartite 
lattice

Connection 
between 
spin and 
density/gap 
function



  

Shift current
● Light absorption process in homogeneous 

materials

● 2º order effect with

● Requires inversion symmetry breaking

Shift photoconductivity in the Haldane model



  

    Haldane model review

Tight-binding 
 parameters

● Onsite energies           +(-) for A(B) 

● nn tunnelings 

● nnn tunnelings             +(-) for A(B)→ A(B) 

Breaks IS

Breaks Time Reversal symmetry (TRS)

2

C1: Chern number



  

     Numerical evaluation:
 shift current

Deep tight-binding regime

3

Sign controlled by mass term



SU(N) dynamics of a phonon-driven spin-
1 magnet

1. SU(N) Monte Carlo and molecular dynamics WITH phonons
• SU(N) → dipole and quadrupole moments
• Phonons couple to quadrupoles linearly
• Driven-damped phonons

2. Out-of-equilibrium physics
• One phonon drive = Floquet copies• Two phonon drive = effective magnetic 

field

Hsp = strong single-ion anisotropy
Hph = driven-damped oscillator 
Hsp-ph = quadrupoles  phonons

K. Hart, R. Sutcliffe, G. Refael, A. Paramekanti



Superconductivity in a Hund Correlated Two‐
Orbital Attractive Hubbard Model

MODEL

phonon‐driven 
attraction

Holstein coupling

METHOD: DMFT + ED

RESULTS: normal phase
z

superconducting phase

ϕ

comparison

L. Torchia M. Capone
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The pseudogap – Fermi liquid transition of the Hubbard model
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Physical Model
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Algorithmic Matsubara Integration (AMI)
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Real Frequency Issues – Analytic Continuation

Fig. 1. Imaginary part of fourth order self-energy Feynman diagram as a function of external 
real frequency, 𝜔, for various values of the analytic continuation parameter, Γ.

Renormalized perturbation theory for fast evaluation of Feynman diagrams 
on the real frequency axis 
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New numerical scheme evaluates Feynman Diagrams on the real frequency axis exponentially faster
What are Feynman Diagrams?
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Renormalized Perturbation Theory

Fig. 2. Counter-term diagrams for the second order self-energy diagram. Here 𝑠 
denotes the number of insertions that are placed on the root diagram. This leads a 
to a combinatorically growing number of diagrams for each value of 𝑠.
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Recap of the Method – “There is no free lunch”
• We introduced a new method to evaluate Feynman diagrams on the real frequency axis.

Conclusions
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Results

Fig. 5. Imaginary part of fourth order self-energy Feynman diagram including up to 1 insertion using Γ = 0.01 
as a function of external real frequency, 𝜔, for various values of renormalized perturbative shifts, 𝑧.

Fig. 4. Real part of fourth order self-energy 
diagram as a function of the computational 
time for various methods.

Fig. 3. Imaginary part of second order self-energy as 
a function of the analytical continuation parameter, Γ. 

Fig. 6. Density of states for the half-filled case at 𝛽 = 5 for 
Γ = 0.001. Here we use 𝑧 = 0.2𝑖 truncated at 1 insertion for 
fourth order diagrams and 2 insertions at other orders.
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• Feynman Diagrams provide a pictorial representation for a series of interactions of particles in a 

many body system.

• A solid line is a fermion (e.g., electron) and a wavy line is boson (e.g., photon).

• Mathematically, these diagrams can be represented by an integral over all the internal degrees 

of freedom (momentum 𝑞, frequency 𝑖𝜈!) of the product of Green’s functions for each fermion.

• We use the single band Hubbard Model on 2D square lattice 

with nearest neighbour hopping, 𝑡, interaction, 𝑈, and 𝜇 = 0.

• This restricts fermions to only reside at lattice sites and 

bosons are the interactions between sites.

• The fermions are allowed to hop to neighbouring sites. 

• This corresponds to this Hamiltonian and particle dispersion, 

• Allows us to analytically evaluate frequency integrals encountered in the evaluation of Feynman 
Diagrams by using Cauchy’s residue theorem. [2]

• Once an analytic expression is formed, we can then perform the analytic continuation that is 
required to evaluate on the real frequency axis

• We must perform an analytic continuation to the expression returned 

from AMI. However, this is a problem as the integrand has peaks with 

widths proportional to Γ.

• This leads to insufficient sampling of integrand in Monte Carlo 

methods to evaluate the remaining momentum integrals.

• In Fig.1, we see that taking a value of Γ too small (0.01), we get a large uncertainty in the 

integration. Also, by taking a larger value of Γ the error goes down, but the graphs lose sharp 

features at 𝜔 = 0 and 𝜔 = ±7.5, which is not physically correct!

• Our method addresses this issue which leads to exponentially faster calculations with small Γ.

• We first compare the results of our new method 

with the old method in Fig. 3.

• Right pane is our proposed approach, left pane is 

the original way of evaluating the diagrams.

• Note that various choices of 𝑧 with 2 insertions 

approaches the same value and using 3 insertions 

brings the values even closer.

• By choosing z = 𝑖𝛼 with 𝛼 ≫ Γ, we find that the 

widths of previously troubling peaks now are 

proportional to 𝛼 + Γ so we can take Γ → 0".

• Expanding about the known solution of 𝐻#′ with respect to 𝐻$′ we have:

• The expansion of 𝐻$′ in comparison to 𝐻$ spawns an infinite set of counter-term 

diagrams with self-energy insertions, shown in Fig. 2.

• Thus, any diagram that we were going to include in our calculations is then 

replaced by an infinite series of diagrams.

• The benefit of this method is seen by taking a purely imaginary value of

• We modify our functions so that they are easy to integrate at the cost of summing an 

infinite series of diagrams. Luckily, the infinite series has the form:

• That is, each term with 𝑠 insertions is weighted by 𝑧%. Meaning for a choice of 𝑧 so 

that 𝑧 ≪ 𝑅, where R	is the radius of convergence of the untruncated series (R = 𝑖𝜔#) 

[3], the higher order terms become negligible.

• So, we truncate the series to 𝑚&' order diagrams with 𝑐 number of insertions as 

shown.

• Like all perturbative methods, we start with a problem that we know the answer to, 

but then make slight corrections to get an approximate answer to another 

problem that would otherwise be difficult to solve.

• We introduce a single particle term 𝛿 and insert it into our Hamiltonian while 

leaving it unchanged:

• In Fig. 4, a fourth order diagram is plotted as a 

function of computational time with Γ = 2×10().

• The benchmark data was acquired using the old 

method and took 640 CPU hours to converge. In 

contrast to our Renormalized PT approach which 

converged to the correct answer in about 5 hours.

• This is an improvement of about 120 times as fast.

• Fig. 5 shows the effect of taking different 

values of 𝑧. For a large enough 𝛼 > 0.01 , we 

see preserved features that are lost in Fig. 1.

• Fig. 6 shows a physical application of our new 

approach using Γ = 10(* to obtain the density 

of states of a material.

• This displays the physically correct metal 

insulator transition from 𝑈 = 3 → 4 for the value 

of 𝛽 = 5.

• This expansion included a total of 143 diagrams, 

but due to the added numerical broadening these 

diagrams are now easier to evaluate.

• This method creates a new numerical regulator whose effect is removed by including several 

easier-to-evaluate diagrams. This regulator broadens peaks in integrands so that they can be 

evaluated via a Monte Carlo integration scheme exponentially faster.

• This method has a potentially massive advantage if a fine-tuned choice of 𝑧 is used so that a 

limited number of extra diagrams need to be summed.



 



Altermagnetism and superconductivity in 
multiorbital t-J model

Study of magnetic and pairing instabilities driven by 
exchange interactions:
• Hartree-Fock-Bogoliubov theory treatment of 

multiorbital model

Rich phase diagram:
• D-wave/s-wave superconductor
• ALM/AFM magnetic ordering



Seebeck coefficient in the repulsive Fermi Hubbard model

• Anomalous sign change at 
finite doping.

• Divergence near half filling.

Universal signatures of Seebeck 
coefficient in cuprates:

Interaction/charge gap driven? 

particle hole symmetricsets dopingnearest neighbor hopping

Parent hamiltonian of cuprates – Repulsive Fermi Hubbard model

Investigate by Kelvin formula for thermopower

Approach to free particle of Seebeck coefficient limit through many body gap closing

Parton construction: Effective low energy hamiltonian – t-J model:

S. Roy, A. Samanta, N. Trivedi

U/t

T/t

S(
k B

/e
2 )

n

Local moment formation and Seebeck anomaly:

T

n

T

n

• Anomalous Seebeck coefficient in 
concurrence with local moment formation.

• Divergence of Seebeck is due to singlet 
formation between neighboring sites.

• Approach to free particle limit is 
nonmonotonic wrt temperature.

• Only keep order parameters associated with charge 
degrees of freedom.

• Sufficient to capture Seebeck anomaly.

T

n T
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U/t = 8.0 U/t = 8.0

U/t = 8.0

T/t = 1.0



Two-particle calculations with QTCI
Iteratively solving the parquet equations

Stefan Rohshap, Marc Ritter, Hiroshi Shinaoka, Markus Wallerberger, and Anna Kauch
Computational Quantum Materials School 2024



Unveiling Frustrated Interactions in BaCo2(AsO4)2
with the Magnetotropic Susceptibility

Poster by: William Bateman-Hemphill
Publication by: Shiva Safari, William Bateman-Hemphill, Asimpunya Mitra, Félix Desrochers, Emily Z. Zhang, Lubuna Shafeek,

Austin Ferrenti, Tyrel M. McQueen, Arkady Shekhter, Zoltán Köllö, Yong Baek Kim, B. J. Ramshaw, K. A. Modic

Main Conclusion

• BaCo2(AsO4)2 (often called BCAO) was first thought of as 
a quantum spin liquid candidate, is now known to be 
magnetically ordered

• One might still hope to induce a QSL using out-of-plane 
magnetic field

• In this work, we map the field-induced phase diagram of 
BCAO and determine that it can be mostly explained by a 
classical model with long-range ordered states

Conclusion

Field-Induced Phase Diagram

• Monte Carlo Calculations (pink) reproduce the qualitative 
features of the magnetotropic susceptibility (A) and the 
shape of the phase diagram (B)

• BaCo2(AsO4)2 is well-described by a classical model as an easy-
plane magnet

• Quantum fluctuations likely play a role in suppressing the critical 
fields significantly

Quantum Phase Diagram from iDMRG

• Excellent qualitative agreement with experiment!
• All critical fields are over-estimated by a factor ~1.6



To be, or not to be, phonon-mediated ?
Jean-Baptiste de Vaulx - Institut Néel, CNRS, Grenoble, France

Nickelates : new family of superconductors.
Show strong analogies with the cuprates.
But are nickelates conventional 
superconductors ?
Our work (Meier et al. Phys. Rev. B 109 (18): 184505) :
• G0W0@DFT electronic structures 

calculations
• Electron-phonon coupling 

calculations within Eliashberg theory

Results :
• Analysis of doping and pressure behavior in 

comparison with experiment confirms the 
non-phonon mediated nature of nickelates.

• Superconductivity mechanism 
remains unconventional ! And moreover : Correlation-induced self-doping 

and Lifshitz transition in La2NiO4

Crédit photo : arch. afp
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