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Why clusters?

To capture short-range fluctuations exactly.

Important for effective (non-Hubbard) interactions mediated by short-range fluctuations

→ Superconductivity!

The computational cost quickly rises with cluster size

Two paradigms:

Cluster (or Cellular) Dynamical Mean Field Theory (CDMFT) : real-space based

Lichtenstein et al, PRB 62, R9283 (2000); Kotliar et al, PRL 87, 186401 (2001)

Dynamical Cluster Approximation (DCA) : momentum-space based

Hettler et al, PRB 58, R7475 (1998)
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Cluster kinematics
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Periodization: Clustering breaks translation invariance, which needs to be restored:

Gper.(k,ω) =
1
L

∑

R,R′
e−ik·(R−R′)GRR′(k̃,ω)
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Generalization of DMFT to small clusters

HAIM→ Hc

Simple adaptation of DMFT

Scalar equations become matrix

equations

H

H
c

H
c

H
c

H
c

H
c

H
c

H
c

H
c

H
c

Dynamical mean field G0:

Seff[c, c∗] = −
∫ β

0

dτdτ′
∑

α,β

c∗α(τ)G
−1
0,αβ(τ−τ

′)cβ(τ
′) +

∫ β

0

dτH1(c, c∗)
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The hybridization function

In the frequency domain:

G−1
0 (iωn) = iωn − tc − Γ

→ hybridization function

(iωn) where G0(iωn) =

∫ β

0

eiωnτG0(τ)

Spectral representation of Γ:

Γαβ(iωn) =
Nb
∑

r

θαrθ
∗
β r

iωn − εr
or Γ(iωn) = θ

1
iωn − ε

θ †

Can be represented in the Hamiltonian formalism by a set of noninteracting bath orbitals ar :

Hc =
∑

α,β

t c
αβ c†

αc
β
+ U
∑

i

ni↑ni↓ +
∑

r,α

θrα

hybridization matrix←

(c†
αar

→ bath orbital

+H.c.) +
∑

r

εr

bath energies←

a†
r ar
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The Anderson impurity model

Non interacting Green function (cluster+bath): Gfull
0 (ω) = (ω− T)−1

where T =
�

tc θ
θ † ε

�

�

Gfull
0 (ω)
�−1
=

�

ω− tc −θ
−θ † ω− ε

�

=

�

A11 A12
A21 A22

�

=

�

B11 B12
B21 B22

�−1

Need to extract the cluster component of Gfull
0 (ω), i.e., B11:

A11B11 + A12B21 = 1 A21B11 + A22B21 = 0

B21 = −A−1
22 A21B11 =⇒
�

A11 − A12A−1
22 A21

�

B11 = 1

G−1
0 c =ω− tc − Γ(ω) Γ(ω) = θ

1
ω− ε

θ †
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The Anderson impurity model (cont.)

Interacting case:

One must simply add the cluster self-energyΣ(ω) (no self-energy on the bath).

The cluster Green function is then

G−1
c (ω) =ω− tc − Γ(ω)−Σ(ω)

= G−1
0 (ω)−Σ(ω)
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Discrete bath systems
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The CDMFT Procedure (discrete bath)

1 Start with a guess value of (θαr ,εr).

2 Calculate the cluster Green function Gc(ω) (ED).

3 Calculate the superlattice-averaged Green function

Ḡ(ω) =
∑

k̃

1

G−1
0 (k̃)−Σ(ω)

4 Minimize the following distance function:

d(θ ,ε) =
∑

ωn

W (iωn) tr
�

�

�G−1
c (iωn)− Ḡ−1(iωn)

�

�

�

2

over the set of bath parameters with fixed Ḡ. Thus obtain a new set (θαr ,εr).

5 Go back to step (2) until convergence.
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The CDMFT self-consistency loop

Initial guess for Γ(iωn)

Impurity solver: Compute Gc(iωn)

Ḡ(iωn) =
L
N

∑

k̃

�

G−1
0 (iωn, k)−Σ(iωn)

�−1

Γ(iωn) → iωn − tc + µ − Ḡ(iωn) − Σ(iωn) (QMC)

minimize
∑

ωn
W (iωn) tr
�

�

�G−1
c (iωn) − Ḡ−1(iωn)

�

�

�

2
(ED)

Γ converged? exit
YesNo
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Discrete bath drawbacks (ED)

The hybridization function has a

finite number of poles.

There is some arbitrariness in the

choice of distance function.

There is some arbitrariness in the

choice of the bath configuration.

Normal state: The number of

electrons in the impurity is

quantized; there are Hilbert space

sectors and hence discontinuities as a

function of chemical potential.

ED : Zero temperature is not really

zero! There is an effective energy

scale∼ level separation.

n vs µ in the 1D Hubbard model (U = 4t , L = 4, nb = 4):
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Application: The Mott transition

–6 6

4 sites

U=7t
U=10t

U=t
U=5t

/t–6 6/t

U=t
U=8t

1 site

U=12t
U=14t

Y.Z. Zhang, M. Imada, Phys. Rev. B 76, 045108 (2007)
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Application: the Mott transition

QCM:

0.0

0.1

0.2

)
ω(

A

U/t=5.0a) U/t=5.4b)

-4 -2 0 2 4
ω

0.0

0.1

0.2

)
ω(

A

U/t=5.6c)

-4 -2 0 2 4
ω

U/t=5.8d)

H. Park et al, PRL 101, 186403 (2008)

ED:

0

0.1
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)
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(ω

)

ω ω

solutions from M. Balzer et al., Europhys. Lett. 85, 17002 (2009)
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Pairing operators

Superconductivity is described by pairing fields:

∆=
∑

r,r′
∆rr′ cr↑cr′↓ +H.c

s-wave pairing: ∆rr′ = δrr′

dx2−y2 pairing:

∆rr′ =

¨

1 if r − r′ = ±x
−1 if r − r′ = ±y

++

−

−

dx y pairing:

∆rr′ =

¨

1 if r − r′ = ±(x+ y)
−1 if r − r′ = ±(x− y)

+

+

−

−

Pairing fields are introduced in the bath, and measured on the cluster
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Pairing operators (cont.)

Pairing fields violate particle number conservation

The Hilbert space is enlarged to encompass all particle numbers with a given total spin

Use the Nambu formalism: a particle-hole transformation on the spin-down sector: cα↓→ c†
α↓

and ar↓→ a†
r↓

Possible structures of the one-body matrix:

c↑
a↑
c†
↓

a†
↓









t↑ θ↑ 0 0
θ †
↑ ε↑ 0 ∆b

0 0 −t↓ −θ↓
0 ∆†

b

pairing within bath←

− θ †
↓ −ε↓









or

c↑
a↑
c†
↓

a†
↓









t↑ θ↑ 0 ∆

θ †
↑ ε↑ ∆ 0

0 ∆† −t↓ −θ↓
∆† 0

pairing between bath & cluster←

− θ †
↓ −ε↓
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dSC : simple bath parametrization
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Foley et al., Phys. Rev. B 99 184510 (2019).
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dSC : general parametrization
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Θ2

Θ2
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±Θi

Ei j
≡ ±(θi a

†

i
c j +∆i ai(iσy )c j +H.c.)

−Θ
A
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B
2

Θ
B
2

Θ
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2B 2A

Θ
A
1Θ

B
1

Θ
B
1

Θ
A
1

E1

1A 1B

2B 2A

±Θ
X
i

Ei jX
≡ ±(θiX a

†

i
c jX +∆iX ai(iσy)c jX

+θ s
iX

a
†

i
σzc jX + TiX aiσx c jX +H.c.)

Foley et al., Phys. Rev. B 99 184510 (2019).
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dSC : order parameters
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Application: Resilience of dSC to extended interactions

H =
∑

r,r′,σ

tr,r′ c
†
rσcr′σ + U
∑

r
nr↑nr↓ +
∑

r 6=r′
Vrr′nrnr′ −µ
∑

r,σ

nr,σ

Question: effect of NN repulsion V on dSC in the 2D Hubbard model?

V is a priori detrimental to dSC (pair breaking effect), and larger than J .
But: V increases J .

Exact treatment of V within the cluster; Hartree approximation between clusters.

Result: a moderate V has no effect on dSC at low doping.

The retarded nature of the effective pairing interaction is important.
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Resilience of dSC to extended interactions (cont.)
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Non-magnetic impurity in graphene

G
−1(k̃,ω) =ω− t(k̃)− (ω) =















z − t11(k̃)−Σ1(ω) −t12(k̃) −t13(k̃) . . . −t1M (k̃)
−t21(k̃) z − t22(k̃)−Σ2(ω) −t23(k̃) . . . −t2M (k̃)
−t31(k̃) −t32(k̃) z − t33(k̃)−Σ3(ω) . . . −t3M (k̃)

...
...

...
. . .

...

−tM1(k̃) −tM2(k̃) −tM3(k̃) . . . z − tM M (k̃)−ΣM (ω)















1 2

3 4

5 6

M. Charlebois et al., Phys. Rev. B91, 35132 (2015).
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Exact diagonalizations vs CT-Quantum Monte Carlo

ED CT-QMC

temperature T = 0 T > 0

frequencies real/complex complex + analytic continuation)

sign problem no yes

complex HS yes no

system size small moderate

CDMFT bath small infinite

interaction strength any depends on expansion scheme
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The exact diagonalization procedure

1 Build a basis

2 Construct the Hamiltonian matrix (stored or not)

3 Find the ground state (e.g. by the Lanczos method)

Calculate ground state properties (expectation values, etc.)

4 Calculate a representation of the one-body Green function:

Continuous-fraction representation

Lehmann representation

5 Return to the embedding method (CDMFT)
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Building the basis (1)

Depends on U(1) conservations laws (N↑ and/or N↓)

Basis of occupation number eigenstates:

(c†
1↑)

n1↑ · · · (c†
L↑)

nL↑(c†
1↓)

n1↓ · · · (c†
L↓)

nL↓ |0〉 niσ = 0 or 1

If no pairing nor spin flip terms:

Both N↑ and N↓ are conserved
Hilbert space factorizes as V = VN↑ ⊗ VN↓
dimension:

d = d(N↑)d(N↓) d(Nσ) =
L!

Nσ!(L − Nσ)!
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Dimension of the Hilbert space at half-filling

At half-filling (N↑ = N↓ = L/2):

d =
�

L!
[(L/2)!]2

�2

∼ 2
4L

πL

L dimension

2 4

4 36

6 400

8 4 900

10 63 504

12 853 776

14 11 778 624

16 165 636 900
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Two-site cluster: Hamiltonian matrix

Half-filled, two-site Hubbard model: 4 states

States and Hamiltonian matrix:

|01,01〉
|01,10〉
|10,01〉
|10

spin ↑ occupation←
, 10
→ spin ↓ occupation
〉







U − 2µ −t −t 0
−t −2µ 0 −t
−t 0 −2µ −t
0 −t −t U − 2µ
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Six-site cluster: Hamiltonian matrix

Sparse matrix structure

400× 400
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Building the basis (2)

Basis of occupation number eigenstates:

(c†
1↑)

n1↑ · · · (c†
L↑)

nL↑(c†
1↓)

n1↓ · · · (c†
L↓)

nL↓ |0〉 niσ = 0 or 1

Spin-flip terms but no pairing terms: N↑ + N↓ still conserved.

Pairing terms but no spin-flip: N↑ − N↓ still conserved.

Paring terms and spin-flip terms: no U(1) conservation law, dimension 4L .

We build a table of binary representations of each state in the basis:

b[i] = (n1↑[i] · · ·nL↑[i]n1↓[i] · · ·nL↓[i])2 = (b↑[i], b↓[i])

We find the index from b by binary search
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Constructing the Hamiltonian matrix

Hc =
∑

α,β

t c
αβ c†

αc
β
+
∑

α,β

V c
αβnαnβ

=
∑

a

haHa

Practical to construct and store (in sparse form) each Ha separately

For each realization of the impurity model (ha), one then constructs a single sparse matrix for H

Matrix elements of Hubbard U : bit_count(b_up & b_dn)

Two basis states |b〉 and |b′〉 are connected with c†
αc
β
if their binary representations differ at two

positions α and β .

〈b′|c†
αc
β
|b〉= (−1)Mαβ Mαβ =

β−1
∑

c=α+1

nc
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The Lanczos method

Problem : Finding the ground state |Ω〉 by an iterative application of H

Start with random vector |φ0〉
An iterative procedure builds the Krylov subspace:

K = span
�

|φ0〉, H|φ0〉, H2|φ0〉, · · · , HM |φ0〉
	

The Krylov subspace represents well the extreme (low- and high-) energy sectors of the Hilbert

space

3-way recursion for an orthogonal basis {|φn〉}:

|φn+1〉= H|φn〉 − an|φn〉 − b2
n|φn−1〉

an =
〈φn|H|φn〉
〈φn|φn〉

b2
n =

〈φn|φn〉
〈φn−1|φn−1〉

b0 = 0
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The Lanczos method (2)

In the basis of normalized states |n〉= |φn〉/
p

〈φn|φn〉, the projected Hamiltonian has the

tridiagonal form

P

projector ontoK ←

HP = T =













a0 b1 0 0 · · · 0
b1 a1 b2 0 · · · 0
0 b2 a2 b3 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · aN













At each step n, find the lowest eigenvalue of that matrix

Stop when the estimated Ritz residual
�

�

�

�T |ψ〉 − E0|ψ〉
�

�

�

� is small enough

Run again to find eigenvector |ψ〉=
∑

nψn|n〉 as the |φn〉’s are not kept in memory.
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The Lanczos method: features

Required number of iterations: typically from 50 to 200

Extreme eigenvalues converge first

Rate of convergence increases with separation between ground state and first excited state

Cannot resolve degenerate ground states : only one state per ground state manifold is picked up

For degenerate ground states and low lying states (e.g. in DMRG), the Davidson method is

generally preferable
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The Lanczos method: illustration of the convergence

149 iterations on a matrix of dimension 213,840: eigenvalues of the tridiagonal projection as a

function of iteration step
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Lanczos method for the Green function

Zero temperature Green function:

Gαβ(z) = G(e)
αβ
(z) + G(h)

αβ
(z)

G(e)
αβ
(z) = 〈Ω|cα

1
z −H + E0

c†
β
|Ω〉

G(h)
αβ
(z) = 〈Ω|c†

β

1
z +H − E0

cα|Ω〉

Consider the diagonal element

|φα〉= c†
α|Ω〉 =⇒ G(e)αα = 〈φα|

1
z −H + E0

|φα〉

Perform a Lanczos procedure on |φα〉.
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Lanczos method for the Green function (2)

Need to find element

G(e)αα = 〈φα|
1

z − PHP + E0
|φα〉

Then G(e)αα is given by a Jacobi continued fraction:

G(e)αα(z) =
〈φα|φα〉

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − · · ·

The coefficients an and bn are stored in memory

See, e.g., E. Dagotto, Rev. Mod. Phys. 66:763 (1994)
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Lanczos method for the Green function (3)

What about non diagonal elements G(e)
αβ

?

Trick: Define the combination

G(e)+
αβ
(z) = 〈Ω|(cα + cβ)

1
z −H + E0

(cα + cβ)
†|Ω〉

G(e)+
αβ
(z) can be calculated like G(e)αα(z)

Since G(e)
αβ
(z) = G(e)

βα
(z), then

G(e)
αβ
(z) =

1
2

�

G(e)+
αβ
(z)− G(e)αα(z)− G(e)

ββ
(z)
�

Likewise for G(h)
αβ
(z)
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The Lehmann representation

Gαβ(z) =
∑

m

〈Ω|cα|m〉〈m|c
†
β
|Ω〉

z − Em + E0
+
∑

n

〈Ω|c†
β
|n〉〈n|cα|Ω〉

z + En − E0

Define the matrices

Q(e)αm = 〈Ω|cα|m〉 Q(h)αn = 〈Ω|c
†
α|n〉

Then

Gαβ(z) =
∑

m

Q(e)αmQ(e)∗
βm

z −ω(e)m

+
∑

n

Q(h)αnQ(h)∗
βn

z −ω(h)n

=
∑

r

QαrQ
∗
β r

z −ωr
QQ† = 1
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The Band Lanczos method

Define |φα〉= c†
α|Ω〉, α= 1, . . . , L.

Extended Krylov space :

¦

|φ1〉, . . . , |φL〉, H|φ1〉, . . . , H|φL〉, . . . , (H)M |φ1〉, . . . , (H)M |φL〉
©

States are built iteratively and orthogonalized

Possible linearly dependent states are eliminated (‘deflation’)

A band representation of the Hamiltonian (2L + 1 diagonals) is formed in the Krylov subspace.

It is diagonalized and the eigenpairs are used to build an approximate Lehmann representation

http://www.cs.utk.edu/ dongarra/etemplates/node131.html
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Lanczos vs band Lanczos

The usual Lanczos method for the Green function needs 3 vectors in memory, and L(L + 1)
distinct Lanczos procedures.

The band Lanczos method requires 3L + 1 vectors in memory, but requires only 2 iterative

procedures ((e) et (h)).

If Memory allows it, the band Lanczos is much faster.
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Cluster symmetries

Clusters with C2v symmetry Clusters with C2 symmetry

43 / 53



Cluster symmetries (2)

Symmetry operations form a groupG

The most common occurences are :

C1 : The trivial group (no symmetry)

C2 : The 2-element group (e.g. left-right symmetry)

C2v : 2 reflections, 1 π-rotation
C4v : 4 reflections, 1 π-rotation, 2 π/2-rotations
C3v : 3 reflections, 3 2π/3-rotations
C6v : 6 reflections, 1 π, 2 π/3, 2 π/6 rotations

States in the Hilbert space fall into a finite number of irreducible representations (irreps) ofG

The Hamiltonian H ′ is block diagonal w.r.t. to irreps.

Easiest to implement with Abelian (i.e. commuting) groups
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Taking advantage of cluster symmetries…

Reduces the dimension of the Hilbert space by∼ |G|
→ order of the group

Accelerates the convergence of the Lanczos algorithm

Reduces the number of Band Lanczos starting vectors by |G|
But: complicates coding of the basis states

Make use of the projection operator:

P(α) =
dα

dimension of irrep.←

|G|

∑

g∈G
χ

→ group character

(α)∗
g g

See, e.g. Poilblanc & Laflorencie cond-mat/0408363
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Group characters

C2 E C2

A 1 1
B 1 −1

C2v e c2 σ1 σ2

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

C4v e c2 2c4 2σ1 2σ2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0
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Taking advantage of cluster symmetries (2)

Need new basis states, made of sets of binary states related by the group action:

|ψ〉=
dα
|G|

∑

g

χ(α)∗g g|b〉 g|b〉= φ
→ fermionic phase

g(b)|g b〉

Then matrix elements take the form

〈ψ2|H|ψ1〉=
dα
|G|

∑

g

χ
(α)∗
h φg(b)〈g b2|H|b1〉

When computing the Green function, one needs to use combinations of creation operators that

fall into group representations. For instance (4× 1):

c(A)1 = c1 + c4

c(A)2 = c2 + c3

c(B)1 = c1 − c4

c(B)2 = c2 − c3

1 2 3 4
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Taking advantage of cluster symmetries (3)

Example : number of matrix elements of the kinetic energy operator (Nearest neighbor) on a 3× 4
cluster with C2v symmetry:

A1 A2 B1 B2
dim. 213,840 213,248 213, 440 213,248

value
−2 96 736 704 0
−
p

2 12,640 6,208 7, 584 5,072
−1 2,983, 264 2,936, 144 2, 884,832 2,911, 920

1 952,000 997,168 1,050, 432 1, 021,392p
2 5,088 2,304 3, 232 2,992
2 32 0 0 0
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Outline

1 Cluster Dynamical Mean Field Theory

2 The impurity solver: Exact Diagonalizations

3 Application to the Emery model

4 PyQCM : a python library for CPT, CDMFT and VCA

5 Advert
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which disorder effects are known to be significant (4), or for
other cuprates in the doping range 0.11 < p < 0.30. However, as
summarized in Fig. 3, a quadratic planar resistivity has been
observed in a few cases: underdoped YBCO (p = 0.03 and 0.09)
(8, 10, 11), underdoped LSCO (p = 0.02 and 0.08) (8), as well as
strongly overdoped LSCO (p = 0.33). The latter has been argued
to be a Fermi liquid (16). In Fig. 3E and SI Appendix, section 5,
we demonstrate that ρ ∝ T2 also holds at intermediate temper-
atures for prior data for LSCO at p = 0.01 (9). Tl2201 (13) (Tc =
15 K; Fig. 3I) and LSCO (14) at p ≈ 0.30 are in close proximity to
the putative Fermi liquid regime, and the description of the
planar resistivity requires only a small additional T-linear com-
ponent. For underdoped YBCO at p ≈ 0.11 in a 55 T magnetic
field, an approximately quadratic resistive behavior was reported
down to very low temperature (12).
In Fig. 4B and SI Appendix, section 6, we demonstrate that the

four characteristic temperatures and the underlying (hidden)
quadratic resistive regimes of YBCO, LSCO, and Bi2201 can be
identified consistently from prior contour plots of the second
temperature derivative of the resistivity (20). Hg1201 and YBCO
are structurally very different cuprates, with one and two CuO2
sheets per unit cell, respectively (Fig. 1). However, as shown in
Fig. 4, the doping-dependent temperatures T*, T**, T′, and Tc
determined from resistivity, which demarcate five distinct phys-
ical regions, are very similar. For both compounds, the opening
of the pseudogap at T* has been shown to be associated with
a phase transition to a novel magnetically ordered state (21).
The onset of the ρ ∝ T2 behavior below T** agrees surprisingly
well with characteristic temperatures determined by two other
probes: the maximum of the thermoelectric power (TEP) for
both Hg1201 (22) and YBCO (23, 24) (SI Appendix, section 1),
and the onset of a Kerr rotation signal for YBCO (25). In both

compounds, superconducting fluctuations affect the dc conduc-
tivity only near Tc (below T′).

Universal Sheet Resistance. We now analyze the doping depend-
ences of the linear and quadratic contributions to the sheet re-
sistance for Hg1201, YBCO (7, 8, 10–12), Tl2201 (13, 17), and
LSCO (8, 9, 13–15). As shown in Figs. 4 and 5, four primary
regions need to be distinguished: the T-linear regime (p < p* ≈
0.19 and T > T*), the two seemingly disconnected quadratic
regimes (p < p* and T < T**; p > 0.30 and T < 55 K), and the
intermediate “mixed” region (p* < p < 0.30) accessed in high
magnetic fields [data mostly for LSCO (14)].
For several reasons, the results in Figs. 2 and 5 are remark-

able. First, for underdoped Hg1201, we observe a clear and
dramatic “switch” of scattering mechanisms upon cooling: there
is no discernible quadratic (linear) contribution above T* (be-
tween T** and T′) and the residual resistivity is tiny. Second, A1☐
and A2☐ are universal, despite substantial differences in crystal
structure, disorder, and optimal Tc of the four compounds (4).
Consequently, the states near the Fermi level that contribute to
the planar transport are essentially identical, and the underlying
fundamental planar resistivity in the normal state of the cuprates
is now known. Third, A1☐ (for p < p*) and A2☐ (except near p*)
are, to a good approximation, simply proportional to the inverse
hole concentration. Fourth, the scattering mechanism responsible
for the linear temperature dependence of the resistivity is clearly
related to fluctuations that disappear upon cooling below T* and
doping beyond p*. This is apparent from the fact that purely
T-linear behavior is observed only above T*, and also from the
behavior of the resistivity just above p* (Fig. 5B), where A1☐ for
both LSCO and Tl2201 (13, 14) decreases faster than 1/p and
approaches zero as superconductivity disappears around p = 0.30.

Discussion and Conclusions
Discussion of Doping Dependence. Based on the prior observation
of metallic resistive behavior at low hole concentrations, a real-
space picture of mesoscopic phase segregation was proposed,
with a doping-dependent change of the effective volume relevant
to charge transport (9). However, the evidence for such phase
segregation in different cuprate families is varied, which appears
difficult to reconcile with our observation of universality over a
wide doping range (Fig. 5). Another viewpoint is that much of
the cuprate phase diagram is controlled by an underlying quan-
tum critical point (26, 27), which is supported by observations of
novel magnetism below T* (21, 28). In quantum critical-point
theories, the effective interactions among electrons, and conse-
quently all single-particle renormalization phenomena are as-
sumed to be controlled by a fluctuating order parameter of some
kind. Scattering off such fluctuations for T > T* is proposed to
cause the linear-T dependence of the resistivity. Interpreted in
this fashion, the result in Fig. 5 indicates that the critical fluc-
tuations either condense below T* (p < p*) or gradually disap-
pear (p > p*). We note, though, that the 1/p dependence of A1☐
and the quadratic resistive behavior for T < T** are not pre-
dicted by existing quantum critical-point theories.
A more specific picture is obtained by using the Drude for-

mula ρ = m*/(ne2τ), which only assumes that it is possible to
separate the scattering rate (1/τ) from the ratio of the carrier
effective mass to density (m*/n) (29). The observation of distinct
power-law behaviors (ρ☐ = A1☐T and A2☐T2) over a wide doping
range below p* suggests that the scattering rate is proportional to
T and T2 in the respective regions of the phase diagram. One
interpretation of the result in Fig. 5 is that the doping depend-
ences of the scattering rates and carrier densities in the Drude
expression compensate exactly in such a way that A1☐ ∝ A2☐ ∝ 1/
p. However, the simplest interpretation of this proportionality for
p < p* is to associate the doping dependence of the resistivity
solely with the doped carriers: n = p. It follows that the respective

Fig. 1. Crystal structures of four cuprates. (A) The unit cells (total number of
atoms, individual versus pairs of CuO2 sheets, c-axis dimensions, etc.), most
prevalent disorder types, and structural symmetry of these four cuprates
differ considerably (for details, see ref. 4 and SI Appendix, section 2). For
Hg1201, YBCO, and Tl2201, the hole concentration in the CuO2 sheets is
altered by varying the density of interstitial oxygen atoms (each interstitial
oxygen introduces up to two holes into nearby CuO2 sheets), whereas in
LSCO holes are introduced by replacing La3+ with Sr2+ (p = x in this case).
Hg1201 has a particularly simple crystal structure. It is the first member of
the Ruddlesden–Popper family HgBa2CuCan-1CunO2n+2+δ, features one CuO2

sheet per formula unit (n = 1), and the highest optimal Tc (Tc
max = 98 K) of all

such single-layer compounds [e.g., Tc
max = 39 K and 93 K for LSCO and

Tl2201, respectively (4)]. Furthermore, the physical properties of Hg1201
appear to be least affected by disorder (e.g., the residual resistivity is neg-
ligible; Figs. 2 and 3). (B) The universal building block of the high-Tc cuprates
is the CuO2 sheet. The most important electronic orbitals, Cu dx2-y2 and O pσ,
are shown.

12236 | www.pnas.org/cgi/doi/10.1073/pnas.1301989110 Bariši!c et al.
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The Emery model (3-band Hubbard model)

VJ Emery, Phys. Rev. Lett. 58, 2794 (1987) 
CM Varma et al. Solid State Comm. 62 681 (1987)

In our version: 

U on the Cu orbitals only. Oxygens are uncorrelated. 
Parameters:  

  (reference) 

Green function on Copper orbital  takes 
oxygens into account via a hybridization function 

 (nothing to do with the impurity 
problem):
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Realistic parameters (from LAPW ab initio calculations - Wien2K)

C. Weber et al.

Compound ✏d � ✏p tpd tpp tpp0 t
0
/t layers d

apical

Cu�O
(Å) Tc (K)

(1) La2CuO4 2.61 1.39 0.640 0.103 0.070 1 2.3932 38
(2) Pb2Sr2YCu3O8 2.32 1.30 0.673 0.160 0.108 2 2.3104 70
(3) Ca2CuO2Cl2 2.21 1.27 0.623 0.132 0.085 1 2.7539 26
(4) La2CaCu2O6 2.20 1.31 0.644 0.152 0.120 2 2.2402 45
(5) Sr2Nd2NbCu2O10 2.10 1.25 0.612 0.144 0.110 2 2.0450 28
(6) Bi2Sr2CuO6 2.06 1.36 0.677 0.153 0.105 1 2.5885 24
(7) YBa2Cu3O7 2.05 1.28 0.673 0.150 0.110 2 2.0936 93
(8) HgBa2CaCu2O6 1.93 1.28 0.663 0.187 0.133 2 2.8053 127
(9) HgBa2CuO4 1.93 1.25 0.649 0.161 0.122 1 2.7891 90
(10) Sr2CuO2Cl2 1.87 1.15 0.590 0.140 0.108 1 2.8585 30
(11a) HgBa2Ca2Cu3O8 (outer) 1.87 1.29 0.674 0.184 0.141 3 2.7477 135
(11b) HgBa2Ca2Cu3O8 (inner) 1.94 1.29 0.656 0.167 0.124 3 2.7477 135
(12) Tl2Ba2CuO6 1.79 1.27 0.630 0.150 0.121 1 2.7143 90
(13) LaBa2Cu3O7 1.77 1.13 0.620 0.188 0.144 2 2.2278 79
(14) Bi2Sr2CaCu2O8 1.64 1.34 0.647 0.133 0.106 2 2.0033 95
(15) Tl2Ba2CaCu2O8 1.27 1.29 0.638 0.140 0.131 2 2.0601 110
(16a) Bi2Sr2Ca2Cu3O10 (outer) 1.24 1.32 0.617 0.159 0.138 3 1.7721 108
(16a) Bi2Sr2Ca2Cu3O10 (inner) 2.24 1.32 0.678 0.198 0.121 3 1.7721 108

Table 1: Tight-binding parameters of the three-band p-d model, containing the in-plane dx2�y2 and p(x,y) orbitals, for the
hole-doped cuprates (energies in eV). The table is sorted by decreasing charge-transfer energies ✏d � ✏p. We have included the
two nearest-neighbor (intra-cell) hoppings tpd and tpp as well as the inter-cell oxygen-oxygen hopping tpp0 . Using the Löwdin
procedure, we have integrated out the oxygen bands to arrive at a one-band model, from which we have extracted the ratio t0/t
corresponding to the range parameter. We also include the distance between the in-plane copper and the apical atom d apical

Cu�O
.

For the bilayer and trilayer compounds, we display the distance to the apical oxygens from the Cu atoms in the outer planes.
The last column displays the maximum transition temperature Tc,max for the corresponding optimally-doped compound. See
Ref. [1] and citations therein for references to experimental work on structural determination and transition temperatures of
the various cuprate families.

p-2

Weber et al., EPL 100 37001 (2012)



Cartoon density of states (hole picture)

Dash et al, 10.1103/PhysRevB.100.214509 but no so simple…
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The Zhang-Rice singlet

3760 F. C. ZHANG AND T. M. RICE

or antisymmetric state with respect to the central Cu ion:
P(sA) L (~ I )W t

le tj
(5)

where —(+) corresponds to the S(A) state, and the
phase of the p- and d-state wave functions are defined in
Fig. 1. Both S and A states may combine with the d-wave
Cu hole to form either singlet- or triplet-spin states. To
the second order in perturbation theory, the energies of
the singlet and triplet states for S in Eq. (5) are
-8(tt+t2) and 0, respectively, where tl tj/e~ and
t2 t$/(U st,—), while A has energy -4t l. In the band-
structure language, S forms bonding and antibonding
states while A is nonbonding. The large binding energy
in the singlet S state is due to the phase coherence. This
energy should be compared with the energy of an 0 hole
sitting at a fixed site /. In the latter case, the binding en-
ergy of a singlet combination of a 0 hole and its neighbor-
ing Cu hole is only -2(t t+t2), —,

' of the square S state.
Because the effective hopping energy of the 0 hole is t l or
t2 (depending on the spin configuration), much smaller
than the energy separation of these localized states, we
may safely project out the antisymmetric Q-hole states,
and work in the subspace of the S states of Eq. (5). The
energy of the two 0 holes residing on the same square,
i.e., the configuration P;p Pp)dt is —(6t l+4t2) much
higher than the energy of the two separated Q holes. So
the two holes feel a strong repulsion on the same square.
The localized states of (5) are, however, not orthogonal

because the neighboring squares share a common 0 site.
Thus,

&Pl~a IP,' ' & b (bt,j ~ b«j),p),

P I+—X2

where b«j) P 1 if i,j are nearest neighbors. In analogy to
the treatment of Anderson for the isolated spin quasiparti-
cle, we construct a set of Wannier functions (Nv num-

ber of squares):

Ng 'j gPq exp(ik R;),
k

N 'j Pl, +P; exp( —ik R;), (8)

where Pq is a normalization factor

pl, -[1—2 (cosk +cosk~)]

The functions p; are orthogonal, and are complete in the
symmetric 0-hole space. p; combines with the Cu hole at
site i to form a spin singlet (—) or triplet (+):

lj«p -(I/J2)(((ttd;1+(1;(d;t), (10)
with energies in second-order perturbation theory, of

E~ -X I&v,(~ IH I w&I 2/AF. „, (11)
fw)

where w runs over all possible intermediate states, and
AF. is the 0th-order energy difference between lit and lv,
i.e., AF„ez—U or —sz depending on whether or not the
state w contains a doubly occupied Cu hole. From now
on, for simplicity, we set s~ U-e~, i.e., tl t2 t. The
physics is expected to be essentially the same. We find
that

E~ - -8(l T-A, ')t,
Z-N, -'QP„-'=0.96 .

k

The energies of Eq. (12) are very close to those of a single
square. Since E+ -E =15t))t, we can ignore transi-
tions between fy; l and jljt;+l and the system can be treat-
ed within the singlet fljt; 1 subspace. We wish to point out
that it is the phase coherence that produces the large ener-
gy separation of the different symmetry state from the
spin-singlet state of the Cu hole and the symmetric 0
hole. The importance of the phase coherence does not
seem to have been recognized in previous work except for
Hirschs who considered the S combination of 0 states in
the case of a fixed spin direction on the Cu site, and a re-
cent paper by Rice and Wang' on optical properties.
Having a set of proper Wannier wave functions with

large binding energy, the next task is to study the motion
of these singlet states due to the hopping process Eq. (2).
Since the 0 holes are created in the background with sing-
ly occupied Cu holes, when ljt moves from site i to j, a
Cu hole moves simultaneously from site j to i This.
motion is represented by the process lit; dj yj d;,
with kinetic energy described by an effective hopping
Hamiltoniaa

Hp g ftj (l//j dr~) pt dj ~ .
i&j,a

(13)

In Eq. (13) the effective hopping matrix element t;J is
given within second-order perturbation theory by

FIG. 1. Schematic diagram of the hybridization of the 0 hole
(2p ) and Cu hole (3d ). The signs + and —represent the
phase of the wave functions.

g&ljf; d, IH'Iw&&wIH'I(yj d; )+&/«„.
M

Using Eqs. (5), (7), (8), and (10), the right-hand side of
Eq. (14) can be evaluated in the original 0-site represen-

FC Zhang & TM Rice, Phys. Rev. B 37, 3759 (1988)

Each copper atom's oxygen 
neighbor hybridizes with it 
and forms an almost localized 
band



CDMFT : density of states (ionic case)
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CDMFT : density of states (covalent case)
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(b) ionic case, U = 14
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Impurity model
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Superconducting order parameter

ED solver has no sign problem, but stuck at  

Use order parameter as a proxy to 

T = 0

Tc

2Δ̂ = ∑
⟨ij⟩x

(di,↑dj,↓ − di,↓dj,↑) − ∑
⟨ij⟩y

(di,↑dj,↓ − di,↓dj,↑) + H . c .

⟨Δ̂⟩ = ∮
dω
2π

d2k̃
(2π)2

tr [Δ(k̃)G(k̃, ω)]

Green function from CDMFT

Reduced wave vector

Average per site
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Experiments have shown that the families of cuprate supercon-
ductors that have the largest transition temperature at optimal
doping also have the largest oxygen hole content at that dop-
ing [D. Rybicki et al., Nat. Commun. 7, 1–6 (2016)]. They have
also shown that a large charge-transfer gap [W. Ruan et al., Sci.
Bull. (Beijing) 61, 1826–1832 (2016)], a quantity accessible in the
normal state, is detrimental to superconductivity. We solve the
three-band Hubbard model with cellular dynamical mean-field
theory and show that both of these observations follow from
the model. Cuprates play a special role among doped charge-
transfer insulators of transition metal oxides because copper has
the largest covalent bonding with oxygen. Experiments [L. Wang
et al., arXiv [Preprint] (2020). https://arxiv.org/abs/2011.05029
(Accessed 10 November 2020)] also suggest that superexchange
is at the origin of superconductivity in cuprates. Our results reveal
the consistency of these experiments with the above two experi-
mental findings. Indeed, we show that covalency and a charge-
transfer gap lead to an effective short-range superexchange
interaction between copper spins that ultimately explains pair-
ing and superconductivity in the three-band Hubbard model of
cuprates.

cuprate superconductors | three-band Hubbard model | dynamical mean-
field theory | optimization of transition temperature | pairing mechanism

A lthough several classes of high-temperature superconduc-
tors have been discovered, including pnictides, sulfur

hydrides, and rare earth hydrides, cuprate high-temperature
superconductors are still particularly interesting from a funda-
mental point of view because of the strong quantum effects
expected from their doped charge-transfer insulator nature and
single-band spin-one-half Fermi surface (1, 2).

Among the most enduring mysteries of cuprate supercon-
ductivity is the experimental discovery, early on, that the hole
content on oxygen plays a crucial role (2–5). Oxygen hole
content (2np) is particularly relevant since NMR (5, 6) sug-
gests a correlation between optimal Tc and 2np on the CuO2

planes: A higher oxygen hole content at the optimal dop-
ing of a given family of cuprates leads to a higher critical
temperature. This is summarized in figure 2 of ref. 6. The
charge-transfer gap also seems to play a central role for the
value of Tc , as suggested by scanning tunneling spectroscopy
(7) and by theory (8). Many studies have shown that doped
holes primarily occupy oxygen orbitals (3, 9–11). This long unex-
plained role of oxygen hole content and charge-transfer gap on
the strength of superconductivity in cuprates is addressed in
this paper.

The vast theoretical literature on the one-band Hub-
bard model in the strong-correlation limit shows that many
of the qualitative experimental features of cuprate super-
conductors (12, 13) can be understood (14), but obvi-
ously not the above experimental facts regarding oxygen
hole content. Furthermore, variational calculations (15) and
various Monte Carlo approaches (16, 17) suggest that d -
wave superconductivity in the one-band Hubbard model may

not be the ground state, at least in certain parameter
ranges (18, 19).

It is thus important to investigate more realistic models,
such as the three-band Emery-VSA (Varma–Schmitt-Rink–
Abrahams) model that accounts for copper–oxygen hybridiza-
tion of the single band that crosses the Fermi surface (20, 21).
A variety of theoretical methods (8, 22–27) revealed many sim-
ilarities with the one-band Hubbard model, but also differences
related to the role of oxygen (28, 29).

Investigating the causes for the variation of the transi-
tion temperature Tc for various cuprates is a key scien-
tific goal of the quantum materials roadmap (30).⇤ We find
and explain the above correlations found in NMR and in
scanning tunnelling spectroscopy; highlight the importance of
the difference between electron affinity of oxygen and ion-
ization energy of copper (21, 31); and, finally, document
how oxygen hole content, charge-transfer gap, and cova-
lency conspire to create an effective superexchange interac-
tion between copper spins that is ultimately responsible for
superconductivity.

We do not address questions related to intraunit-cell order
(32, 33).

Significance

Modern theoretical methods solve a long-standing mystery
of cuprate high-temperature superconductivity, identifying
crucial quantities that optimize the transition temperature.
Superconducting cuprates have very different transition tem-
peratures, and even if the optimal value of the supercon-
ducting transition temperature is obtained for a given parent
compound by varying doping, there is no correlation between
optimal doping and transition temperature. Instead, it has
been found experimentally that the optimal transition tem-
perature is controlled by oxygen hole content or by the size
of the charge-transfer gap. Our calculations show that these
two quantities are correlated and that together with cova-
lency they lead to an effective superexchange interaction
between copper atoms that ultimately controls the optimal
superconducting order parameter.
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and André-Marie Tremblaya,b,c,1
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Experiments have shown that the families of cuprate supercon-
ductors that have the largest transition temperature at optimal
doping also have the largest oxygen hole content at that dop-
ing [D. Rybicki et al., Nat. Commun. 7, 1–6 (2016)]. They have
also shown that a large charge-transfer gap [W. Ruan et al., Sci.
Bull. (Beijing) 61, 1826–1832 (2016)], a quantity accessible in the
normal state, is detrimental to superconductivity. We solve the
three-band Hubbard model with cellular dynamical mean-field
theory and show that both of these observations follow from
the model. Cuprates play a special role among doped charge-
transfer insulators of transition metal oxides because copper has
the largest covalent bonding with oxygen. Experiments [L. Wang
et al., arXiv [Preprint] (2020). https://arxiv.org/abs/2011.05029
(Accessed 10 November 2020)] also suggest that superexchange
is at the origin of superconductivity in cuprates. Our results reveal
the consistency of these experiments with the above two experi-
mental findings. Indeed, we show that covalency and a charge-
transfer gap lead to an effective short-range superexchange
interaction between copper spins that ultimately explains pair-
ing and superconductivity in the three-band Hubbard model of
cuprates.

cuprate superconductors | three-band Hubbard model | dynamical mean-
field theory | optimization of transition temperature | pairing mechanism

A lthough several classes of high-temperature superconduc-
tors have been discovered, including pnictides, sulfur

hydrides, and rare earth hydrides, cuprate high-temperature
superconductors are still particularly interesting from a funda-
mental point of view because of the strong quantum effects
expected from their doped charge-transfer insulator nature and
single-band spin-one-half Fermi surface (1, 2).

Among the most enduring mysteries of cuprate supercon-
ductivity is the experimental discovery, early on, that the hole
content on oxygen plays a crucial role (2–5). Oxygen hole
content (2np) is particularly relevant since NMR (5, 6) sug-
gests a correlation between optimal Tc and 2np on the CuO2

planes: A higher oxygen hole content at the optimal dop-
ing of a given family of cuprates leads to a higher critical
temperature. This is summarized in figure 2 of ref. 6. The
charge-transfer gap also seems to play a central role for the
value of Tc , as suggested by scanning tunneling spectroscopy
(7) and by theory (8). Many studies have shown that doped
holes primarily occupy oxygen orbitals (3, 9–11). This long unex-
plained role of oxygen hole content and charge-transfer gap on
the strength of superconductivity in cuprates is addressed in
this paper.

The vast theoretical literature on the one-band Hub-
bard model in the strong-correlation limit shows that many
of the qualitative experimental features of cuprate super-
conductors (12, 13) can be understood (14), but obvi-
ously not the above experimental facts regarding oxygen
hole content. Furthermore, variational calculations (15) and
various Monte Carlo approaches (16, 17) suggest that d -
wave superconductivity in the one-band Hubbard model may

not be the ground state, at least in certain parameter
ranges (18, 19).

It is thus important to investigate more realistic models,
such as the three-band Emery-VSA (Varma–Schmitt-Rink–
Abrahams) model that accounts for copper–oxygen hybridiza-
tion of the single band that crosses the Fermi surface (20, 21).
A variety of theoretical methods (8, 22–27) revealed many sim-
ilarities with the one-band Hubbard model, but also differences
related to the role of oxygen (28, 29).

Investigating the causes for the variation of the transi-
tion temperature Tc for various cuprates is a key scien-
tific goal of the quantum materials roadmap (30).⇤ We find
and explain the above correlations found in NMR and in
scanning tunnelling spectroscopy; highlight the importance of
the difference between electron affinity of oxygen and ion-
ization energy of copper (21, 31); and, finally, document
how oxygen hole content, charge-transfer gap, and cova-
lency conspire to create an effective superexchange interac-
tion between copper spins that is ultimately responsible for
superconductivity.

We do not address questions related to intraunit-cell order
(32, 33).

Significance

Modern theoretical methods solve a long-standing mystery
of cuprate high-temperature superconductivity, identifying
crucial quantities that optimize the transition temperature.
Superconducting cuprates have very different transition tem-
peratures, and even if the optimal value of the supercon-
ducting transition temperature is obtained for a given parent
compound by varying doping, there is no correlation between
optimal doping and transition temperature. Instead, it has
been found experimentally that the optimal transition tem-
perature is controlled by oxygen hole content or by the size
of the charge-transfer gap. Our calculations show that these
two quantities are correlated and that together with cova-
lency they lead to an effective superexchange interaction
between copper atoms that ultimately controls the optimal
superconducting order parameter.
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Tc vs oxygen-hole content

Rybicki et al, Nature comm. 7, 11413  (2016)

 measured by NMRnp

half-filling : 2np + nd = 1

This means that the sum of the hole contents nd and np as
determined with NMR (r.h.s.) equals the inherent Cu 3d9 hole
content plus the hole content added by doping x (l.h.s.).
This agreement was shown to apply for electron, as well as hole
doping, and different parent materials differ only in terms of the
charge transfer between Cu and O19. One can therefore also infer
from Fig. 1d that compounds with the highest maximum Tc
favour a smaller Cu hole content, and we conclude that it is the
transfer of hole density to the O sites that is important for the
highest Tc. With this result, one may ask if other properties of the
cuprates should be discussed in terms of np and nd, as well? This
leads us to propose a cuprate phase diagram based on NMR.

Phase diagram of the cuprates based on NMR. In Fig. 2 we plot
Tc as a function of nd and 2np for all cuprates for which we
could find both, Cu and O quadrupole splittings in the literature
(see Supplementary Tables 1 and 2) with nd and np calculated
from equations (1) and (2). All materials appear in four
separate groups, marked by colour: (1) La2! xSrxCuO4;
(2) YBa2Cu3O6þ y, and other cuprates of that structure, for
example, (CaxLa1! x)(Ba1.75! xLa0.25þ x)Cu3O6þ y as well as
YBa2Cu4O8; (3) Bi, Tl and Hg based families; and finally, (4) the
two electron-doped systems Pr2! xCexCuO4 and Nd2! xCexCuO4.
The parent line, that is, the line that is given by ndþ 2np¼ 1
(bold dashed line) separates hole doped and electron-doped
systems. Note that the lines parallel to the parent line are
given by ndþ 2np¼ 1þ x, and represent constant hole (x¼ þ 0.1,
þ 0.2) or electron (x¼ ! 0.1, ! 0.2) doping. While there may be
material-specific uncertainties, for example, La2CuO4 is not
located exactly on the parent line, our straightforward analysis
uncovers simple systematic trends concerning all cuprates, and
we discuss some salient features now.

While nd and np change significantly between different parent
compounds along the line ndþ 2np¼ 1, antiferromagnetism
persists as long as there is one hole per CuO2. Such a large
range of variation in the charge transfer in different parent

compounds, with 2np ranging from 0.15 to 0.45, is perhaps quite
surprising, and its further increase, if possible, could raise
Tc substantially.

Doping holes means entering the right upper half of the
(2np, nd)-plane. While nd and np increase with doping, the ratio of
the respective changes (Dnd/2Dnp) appears to be a family
property, that is, parent materials with low np (for example,
La2CuO4) add more holes to O than those with high np. With
electron doping we enter the lower left half of the (2np, nd)-plane.
Here, predominantly Cu holes disappear while the (large) O hole
content changes only slightly. It is not apparent from the phase
diagram why most parent materials can only be doped with one
type of carrier. As a function of doping, Tc increases with a slope
that depends on the position on the parent line, as well, and hole
doping seems to be more effective in raising Tc. Another
important observation concerns optimal doping, that is, the
doping level for which one finds the highest Tc for a given family.
According to our analysis it is related to x¼ ndþ 2np! 1 and not
particular values of nd and np. However, we do observe a slight
increase of the optimal x with increasing np (decreasing nd). Note
that the doping level x follows from our analysis in terms of nd
and np inserted into (3) and is not deduced from material
chemistry. Our analysis agrees with expectations also for
materials doped by interstitial Od where doping level x is often
derived from the Tc dome19. Interestingly, the latter materials we
find located in the same group, despite significant structural
differences between Hg-, Tl- and Bi-based cuprates. Also the
number of close CuO2 layers in multi-layer systems does not
result in significant differences in the charge distribution.

Discussion
In Fig. 2 we plotted only Tc in the (2np,nd)-phase diagram, but it
might be of great interest to investigate whether other cuprate
properties are better presented as a function of the local charge
distribution, instead of the average doping level. While further
analysis is beyond the scope of our paper, we shortly discuss some
other cuprate properties with regard to our phase diagram.

The Néel temperature depends on the interlayer coupling and
therefore is not expected to be dominated by the charge
distribution in the CuO2 plane. For example, YBa2Cu3O6 has a
higher TN than Pr2CuO4 and La2CuO4. It would be interesting,
however, to find out how the exchange coupling (J) changes
along the parent line. Recently, there have been contradicting
reports regarding J in the cuprates57–59. Mallet et al.58 found
no correlation between J and Tc,max in R(Ba, Sr)2Cu3Oy, while
Wulferding et al.57 claimed that J is correlated with Tc,max in
(CaxLa1! x)(Ba1.75! xLa0.25þ x)Cu3O6þ y, which was later
questioned by Tallon59.

Structural parameters of the CuO2 plane such as distances,
buckling, or disorder appear to show no clear trend with
respect to nd and np. However, the apical oxygen distance from
the CuO2 plane increases as one follows the parent line beginning
from low np, similar to the maximum possible Tc. This behaviour
and the concomitant change in density of states of Cu 4s was
noted before60.

Pressure applied to underdoped cuprates usually increases Tc,
while the structural changes to even hydrostatic pressure can be
complicated61. For example, specifically strained HgBa2CuO4þ d
can have almost identical CuO6 octahedra as La2! xSrxCuO4,
however, the large difference in their Tc values remains62. This
might be related to the different values of nd and np for these
families. As a result of recent progress in anvil cell NMR63,64, it is
now possible to study cuprates at high pressures also with
NMR65, and it was found that the Cu splitting increases with
pressure indicating changes in the planar hole contents66.
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Figure 2 | Cuprate phase diagram from NMR. Tc as a function of oxygen
(2np) and copper (nd) hole content for hole doped La-214, Y-123, Y-124,
CLBLCO_x and Bi-, Hg-, Tl-based compounds, as well as electron (e! ) doped
Pr-214 and Nd-214. For list of abbreviations see Table 1. The parent line
(dashed bold black) indicates expectation for the undoped case (ndþ 2np¼ 1
from x¼0), parallel lines (thin black) correspond to expectation for doping
x¼ ndþ 2np! 1 changing with a step of 0.1. The commonly used phase
diagram (T versus x) appears as a projection (upper left).
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Maximum order parameter  vs  2np

KDST,  PNAS 118, e2106476118  (2021)
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CT gap from STM  vs  superconductivity

with some locations showing the CTG feature (red curve
online) and some others showing the broad in-gap states

(blue curve online). The evolution of the in-gap states and

their spatial variations are highly interesting in their own
rights [30], but are not the focus of the current work.

Plotting the CTG-type dI/dV curves of the two samples

together (Fig. 3c), we find that the CTB changes little but
the UHB shows a pronounced shift, in much the same way

as that in Fig. 2d. The CTG size also decreases signifi-

cantly from DCT = 1.5 eV in Bi-2201 to DCT = 1.0 eV in
Bi-2212.

The results shown above clearly demonstrate that within

each cuprate family, the double-layer compound has much
smaller CTG size than their single-layer counterpart. In

Fig. 4 we summarize the DCT value of the four cuprates

studied here as a function of their respective Tc,max. There
is an apparent anticorrelation between the two quantities

within each family: the smaller the DCT in the parent Mott

insulator, the higher the Tc,max at the optimal doping. The
overall trend is consistent with the theoretically predicted

anticorrelation between the charge transfer energy ed–ep
and Tc,max [15].

4 Discussion and conclusions

The experimental trend observed here implies that the
Tc,max of a cuprate at optimal doping is related to the CTG

size in its parent compound. This is very surprising because

the latter is a much bigger characteristic energy as com-
pared to the former, and the two regions are well-separated

in the phase diagram. We propose that the anticorrelation

between DCT and Tc,max actually sheds important new
lights on the mechanism of superconductivity in the

cuprates. From the doped Mott insulator perspective, the

superexchange coupling J between local moments is

responsible for the spin singlet pairing [31]. In the three-
band model, J has a complicated expression as a function

of the bare charge transfer energy ed–ep and bare Hubbard

U [1, 14]. Our observation suggests the CTG size is the
most significant single parameter that determines the SC

properties upon doping. In the scenario of single-band

Hubbard model (Fig. 1b), we may define an effective
superexchange Jeff * 4teff

2 /DCT, where teff is an effective

hopping term characterizing the charge transfer process.
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Optimal np  vs  charge transfer gap
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Oxygen hole content as witness to CT gap
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Figure 4.13: Oxygen hole content and charge-transfer gap. (a) Oxygen hole content, 2np, at opti-
mal doping, as a function of the charge-transfer gap normalized to the total bandwidth. Similar
to Figs. 4.11, 4.12, each curve denotes the variation of a single parameter starting from the ionic
case Eq. (4.1) and the covalent case Eq. (4.2) with Ud = 12 marked by the filled and open symbols
respectively. The O hole content at optimal doping is very well correlated with the normalized
CTG across all parameter-sets and decreases with increase in the CTG. (b) Oxygen component of
the density of states are shown for the variation in the parameter Ud in the ionic case Eq. (4.1) .
The area of the O DOS above the Fermi level gives the hole content on O orbitals, which clearly
decreases as the CTG increases with Ud .
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3. We observe that the antiferromagnetic spin fluctuations are responsible for pairing

in the context of the three-band Hubbard model, which explains the correlation be-

tween the maximum order parameter and the corresponding oxygen hole content.

4. We observe that the model parameters which correspond to more covalent bonding

between Cu and O orbitals lead to a higher superconducting order parameter.

In section 4.1, we discuss the two parameter-sets for the three-band Hubbard model, which we

take as starting points for our computations. In section 4.2, we present the results of our CDMFT

computations on doping the CTI; here we observe a finite value of the d-wave superconducting

order parameter. In section 4.3, we investigate the presence of a discontinuous transition in our

CDMFT solutions within the superconducting phase. In section 4.4, we observe a correlation

between the maximum value of the order parameter and the hole content on oxygen orbitals and

try to understand this correlation by looking at the CTG. In section 4.5, we explore the question

whether superconductivity is mediated by short-range antiferromagnetic fluctuations within the

three-band Hubbard model. In section 4.6, we discuss the dependence of the order parameter and

the CTG on the different parameters that we vary in our computations. In section 4.7, we discuss

the exact cluster-bath impurity model that we use for our CDMFT computations. In section 4.8,

we provide a brief perspective on our results.

4.1 Parameters of the model

We study the three-band Hubbard model (see section 2.2.3) with the following two sets

of parameters, and variations around them:

✏p = 7.0, ✏d = 0, tpd = 1.5, tpp = 1.0, t 0pp = 1 , (4.1)

✏p = 2.3, ✏d = 0, tpd = 2.1, tpp = 1.0, t 0pp = 0.2 , (4.2)
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Tc  vs  magnetic interaction

Paramagnon spectra from RIXS.
(analog of the isotope effect for 
magnetic fluctuations)

5

FIG. 4. (a)-(c), Schematics of CuO2 layers (with apical oxy-
gens) of Hg1201, Hg1212 and YBCO. The Cu-O-Cu bond an-
gle (see text) is indicated in orange, and values of other com-
pounds are summarised in Table S3 in [27]. (d), Tc of various
cuprates at optimal or the best available doping, plotted ver-
sus J extracted from neutron scattering and RIXS, see Table
S4 in [27] for values and references. Thick yellow line is a guide
to the eye, whereas strong outliers from this line are enclosed
by a dashed ellipse. Inset illustrates J between neighbouring
Cu2+ across ligand oxygen atoms. Acronyms not yet defined
in the text: Bi2Sr2Ca2Cu3O10+� (Bi2223), NdBa2Cu3O6+�

(NBCO), Tl2Ba2CuO6+� (Tl2201), YBa2Cu4O8 (Y124). Er-
ror bars indicate uncertainty (1 s.d.) in the estimates of J .

again in the bonding geometry – Bi2212 su↵ers from a
greater departure of the Cu-O-Cu bond angle from 180�

than Bi2201.
The above considerations motivate us to summarize J

and the maximal values of Tc (Tc,max, at optimal or the
best available doping) for a wide spectrum of cuprates
(Fig. 4d), where J is determined from published inelas-
tic neutron scattering or RIXS data (Fig. S9 in [27]).
An appealing trend emerges, namely, eight di↵erent com-
pound families approximately follow a linear relation be-
tween Tc,max and J , and a similar trend is shown in Fig.
S10 [27] between Tc,max and the zone-boundary energy of
the (para)magnons. The three outliers from this trend,
Bi2201, La2�xSrxCuO4 (LSCO), and Ca2�xNaxCuO2Cl2
(CCOC), all have material-specific drawbacks that pre-
vent them from reaching a higher Tc,max, namely, the
doping sites in all of them are close to the CuO2 layers,
which causes a large degree of disorder that is inevitably
bad for high Tc [26]. In addition, LSCO and CCOC have
been found to lack su�cient long-range hopping integral
of the itinerant carriers, which is considered instrumental
for realizing a high Tc [48, 49]. Therefore, Fig. 4d puts
forward a clearly recognizable general trend Tc,max ⇠ J

across all cuprate families, although this has been partly
obscured by material-specific variations and by di↵erent
methods of determining J . Our study obviates both lim-
itations and yields an unambiguous demonstration of the
proportionality between optimally reachable Tc and the
paramagnon energies over the entire Brillouin zone.
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spin susceptibility  and  cumulative order parameter
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IF(ω) = − ∫
ω

0

dω′ 

π
ImFR

ij (ω′ )

F(τ) = − ⟨Tci↑(τ)cj↓(0)⟩

(Gorkov function)

See also: 
Kyung et al, PRB 80, 205109 (2009)  

Sénéchal et al, PRB 87, 075123 (2013)  

Reymbaut et al. PRB 94 155146 (2016) 



cumulative order parameter

IF(ω) = − ∫
ω

0

dω′ 

π
ImFR

ij (ω′ )

F(τ) = − ⟨Tci↑(τ)cj↓(0)⟩

IF(∞) = order parameter

Gorkov function

χ(ω) = ⟨Ω |Sz
1

ω − H + E0
Sz |Ω⟩ + ⟨Ω |Sz

1
ω + H − E0

Sz |Ω⟩



Effective J  vs  CT gap
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Fig. 4. Origin of Pairing. (A) Cumulative order parameter IF (!) (black line) as a function of ! and (⇡, ⇡), (⇡, 0), and (0, 0) components of the imaginary part
of the spin susceptibility �

00
on the cluster, for U = 12 and the covalent case Eq. 4 at T = 0. (Inset) The same, with a zoom-in on low values of !. The (⇡, ⇡)

component of �
00

is the strongest and its peak (blue dotted line) is correlated with the position of 1
2 IF (!!1) (black dotted line). (B) The superexchange J as

a function of the CTG normalized to the total bandwidth. Superexchange is estimated, for different microscopic parameters, from the location in frequency
of the pole with the highest residue in the imaginary part of the spin susceptibility �

00
(!, (⇡, ⇡)) at half-filling in the normal state (no antiferromagnetism,

no superconductivity). The decrease of J with increasing CTG suggests that the CTG plays the role of U in the usual expression J = 4t
2
eff/U. The fact that for

a given CTG, J is always smaller for the ionic case, suggests that the effective hopping teff is smaller in the ionic case, which is expected. Inset shows the
optimal superconducting order parameter for various microscopic parameters as a function of J. This time, by contrast with Fig. 3 A and C where neither
oxygen hole content nor CTG was sufficient to determine the optimal order parameter, here J determines it for both covalent and ionic cases.

the covalent case, while relatively small, is sufficient to cover
the range of parameters that corresponds to existing families of
cuprate high-temperature superconductors (8). The ionic case
corresponds to a large change in model parameters from the
covalent case Eq. 4 and it is not a realistic model for cuprate
superconductivity. Different parameter sets correspond to dif-
ferent compounds or to the same compound in different physical
situations. For example, ✏p (✏d =0) and hence the CTG are
strongly influenced by the presence and location of the apical
oxygen (59) whose crucial role in determining the CTG and
Tc has also been studied in detail in ref. 48. Also, applying a
positive pressure on compounds clearly increases the hopping
parameters. There is thus room for increasing Tc .

The percentage change in each parameter that is necessary
for a 1% relative change in the optimal superconducting order
parameter is shown in Table 1 for the two cases studied here.
The reference values are taken to be the calculations done with
Eq. 3 (ionic case) and Eq. 4 (covalent case) at U =12. Clearly,
the percentage change of parameters that is necessary to increase
the optimal superconducting order parameter is larger for the
covalent case than for the ionic case. Since the reference values
of the optimal order parameter of both cases are close, this sug-
gests that the parameters for the covalent case are closer to the
maximum achievable value of the order parameter in the param-
eter space of the three-band model. Interaction on copper, U ,
has the largest impact on the superconducting order parameter
while oxygen–copper hopping tpd is the second most important
parameter.

Independent of the details of microscopic parameters, oxy-
gen hole content increases the maximum order parameter while
the CTG decreases it, as illustrated in Table 1 for the covalent
case. This is consistent with our observation that the oxygen hole
content at optimal doping and the CTG are almost perfectly
anticorrelated (Fig. 3B) because, as could be argued from the
densities of states in Fig. 1 B and C, small CTG means large
oxygen character of available hole states and vice versa.

Ultimately, the link between oxygen hole content, CTG, cova-
lency, and superconductivity is provided by the effective superex-
change J between copper atoms. The value of J decreases with
increasing CTG, which plays the role of U in the one-band
model. We also saw in Fig. 4B that, for a given CTG value Ect ,
J is larger in the covalent case. This is consistent with the fact
that with J =4t2e↵/Ect , the effective hopping te↵ is larger in the
covalent case. In that case, we can attribute the larger value of
the maximum superconducting order parameter for the covalent
case at a particular Ect to a larger te↵ ; this along with the fact that

the maximum superconducting order parameter decreases with
increasing CTG suggests that the maximum order parameter is
essentially proportional to J .

Covalency then, which is mostly controlled by the difference
between the ionization energy of the transition metal and the
oxygen affinity (21, 31), is important for high-temperature super-
conductivity. Among 3d transition metals, copper forms the most
covalent bonds with oxygen, and hence other transition metal
oxides are less likely to be high-temperature superconductors.
Nickelates (60), for example, are more ionic and have a lower
Tc . In the absence of precise estimates for the CTG that also
controls the value of J , this suggests that combining transition
metals with other chalcogens or pnictogens that might form
strong covalent bonds could be a promising way to look for com-
pounds that superconduct at room temperature and ambient
pressure.

Summary and Conclusion

First, we have shown that the experimental correlation between
oxygen hole content (2np) at optimal doping and optimal Tc (or
order parameter) is satisfied in both ionic and covalent limits of
the three-band model, thus resolving a long-standing theoreti-
cal issue. In each of the two separate cases (covalent or ionic),
changes in different model parameters that correspond to the
same 2np lead, with few exceptions, to the same superconducting
order parameter. By contrast, a given value of the total doping
can lead to different maximum order parameters, depending on
which model parameter is varied. Hence, keeping two axes for
hole content, one for oxygen and one for copper, is a better way
to draw the phase diagram of cuprates.

Second, we have also understood why 2np and the maximum
superconducting order parameter are correlated; this is because
2np and the size of the CTG are almost perfectly anticorrelated.
It is convenient then to focus on the CTG as one of the impor-
tant parameters that control superconductivity. Since the CTG
should be nearly independent of temperature starting from room
temperature to around 100 K, measuring the CTG in the nor-
mal state should give an indication of whether or not a specific
compound can be a high-temperature superconductor. A min-
imum CTG is needed for superconductivity to appear in the
strong-correlation limit, but a large CTG is detrimental.

Third, as observed experimentally, we have shown that the
value of the optimal superconducting order parameter is mostly
controlled by the superexchange J , estimated from the spectrum
of spin fluctuations. Thus, the inverse relation between the opti-
mal superconducting order parameter and the CTG value Ect is

Kowalski et al.
Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity

PNAS | 5 of 7
https://doi.org/10.1073/pnas.2106476118
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Conclusions of this application

The physics of high-  superconductors is well described by a three-band Hubbard model (a.k.a 
Emery model) at intermediate coupling 

 (also the order parameter) at optimal doping is … 

correlated with the concentration of holes on oxygens 

anticorrelated with the charge-transfer gap 

correlated with the superexchange constant J  

This is supported by three types of experiments taken from the litterature (NRM, STM, RIXS) 

Mechanism : short-range AF fluctuations

Tc

Tc
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The PyQCM Library

C++ core with Python envelope

CPT, VCA, CDMFT

High-level stuff (e.g. CDMFT self-consistency loop) in pure Python

Can simulate most lattice models you can think of, in 0 to 3 dimensions.
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Objectives

•To create a tool that taps into DFT and DMFT in order to predict properties of correlated 
materials and devices 

•In particular: to make material-specific predictions about superconductivity 

•To incorporate these tools into Nanoacademic software, which is tailored for quasi-
mesoscopic systems (non-homogenous, thousands of atoms) 

•High-throughput simulation of potential new materials



DFT + DMFT
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Superconducting order parameter (nCCOC & nHBCCO)
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Experience with DFT and/or DMFT 
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